Brown rice, barley, and buckwheat contain a variety of functional ingredients, such as vitamins, minerals, and dietary fibers. Germination is an effective technique for improving the digestion and absorption of the constituents in grains. In addition, germination could modify the chemical properties of grains and increase the content of biologically active substances. Many studies have reported that the intake of grains or germinated grains could ameliorate blood glucose level, stimulate the immune system, lower blood pressure, and result in anti-obesity effect. Therefore, grains and germinated grains are being utilized in a variety of functional products. The present study reviews the primary components and bio-functionalities of grains (brown rice, barley, and buckwheat) and germinated grains (germinated brown rice). The development of grain products for promoting health functional properties is also discussed.
The reduction of the content of sodium chloride in noodle was studied to prevent the problems related to excessive sodium intake, such as high blood pressure and cardiovascular diseases. This study investigated the effect of hydrolyzed anchovy products (HAP) on the salty taste of cooked noodle. The experiment was set up to determine the general properties of dough in dried and cooked noodles, with a sensory test used while increasing the concentration of HAP at same salt contents. There was no significant difference in water binding capacity, solubility, swelling power, lightness, and cooking properties. The redness, yellowness, and hardness were increased upon increasing the contents of HAP. From the sensory evaluation, cooked noodle with added HAP had a high score in appearance, color, texture, and flavor. Moreover, 50% and 75% HAP showed higher values than the control item in saltiness, preference of saltiness, and overall acceptance. Consequently, the HAP could have an effect on dried noodles or cooked noodles as a salty taste enhancer without changing the noodle’s properties.
The purposes of this study are to develop a chitosan suspension for the carbon dioxide (CO2) concentration indication of packaged food and to investigate the changes in the CO2 indication corresponding to 2-amino-2-methylpropan- 1-ol (AMP) or 2-aminoethanol (monoethanolamine, MEA) addition. Chitosan suspension was prepared by adding chitosan (0.1, 0.2, and 0.4%) to distilled water and subsequently the pH of the suspension was adjusted to 7.0 after the addition of AMP or MEA. Changes in the pH and the turbidity of the chitosan suspension were measured over time under exposure in a normal atmosphere or 100% carbon dioxide environment. The pH of the chitosan suspension exposed at 100% carbon dioxide environment decreased rapidly up to approximately 6.3 in the initial CO2 exposure. The transmittance values of 0.1 and 0.2% chitosan suspensions with 5% AMP increased from 32 to 99% and from 19 to 86%, respectively. The addition of 5% AMP improved the visual indication performance of the chitosan suspension since it increased significantly the width of the transmittance value before and after CO2 exposure. The chitosan suspension with AMP has a potential to be used as a quality indicator of the packaged foods which produce carbon dioxide during storage and distribution.
We developed leaching kinetics models and a convective mass transfer model for water soluble solid in jujube (Zizyphus jujube) fruits with hot water. Hot-water leaching process was conducted at 90°C for 100 min. The ratio of solvent (volume, mL) to solid (mass, g) was set to varied ratios of 1:6, 1:8, 1:10, and 1:12.5. The mass transfer coefficients (k) were determined based on the 1st- and 2nd-order kinetic models. The amount of solvent influenced the extraction rate and yield. A higher extraction rate and a higher yield were obtained from a lower solvent to solute ratio (1:6, 1:8, 1:10) compared to high ratio (1:12.5). This implies that an appropriate amount of solvent (i.e., water) is necessary to conduct the extraction process of jujube fruit.
This study optimized physicochemical factors for the sphericity of capsule type-fish roe analogs using equipment with double nozzles. The manufacturing process of fish roe analogs was optimized by response surface methodology with central composite design. For the optimum conditions of sphericity, sodium alginate concentration, calcium chloride concentration, agitation speed of calcium chloride solution in a reactor, and dropping height were investigated as independent variables. Soybean oil was put into the equipment through an internal nozzle, along with sodium alginate solution through an external nozzle into calcium chloride solution. The optimum conditions for the production of fish roe analogs were 1.66% (w/v) sodium alginate, 1.86% (w/v) calcium chloride, agitation speed of calcium chloride at 280 rpm, dropping height at 17 cm between the tip of the nozzle and the surface of calcium chloride solution. Consequently, the fish roe analogs showed a high sphericity of 99.8±0.77% at optimal conditions.
In this study, we developed and validated microanalysis methods for the determination of linear alkylbenzenesulfonate (LAS), sodium lauryl sulfate (SLS), and alpha olefin sulfonate (AOS). The conditions for the analysis of the surfactants using HPLC with FLD, RID, and ELSD detectors were investigated. The methods were validated by determining the linearity, limits of detection (LODs), limits of quantification (LOQs), recovery, precision, and accuracy. LAS analysis by FLD revealed calibration curves that were linear in the range of 10-200 mg/L for an LAS mixture. The calibration curves for C10-C13 had correlation coefficients of 0.995, 0.997, 0.996, and 0.997, respectively. SLS analysis using RID generated a linear calibration curve in the range of 10-300 mg/L. The calibration curve for SLS C12 had a correlation coefficient of 0.9994. AOS analysis using ELSD resulted in a correlation coefficient of 0.9940. For LAS, the LODs and LOQs were 0.09-0.56 and 0.30-1.87 mg/L, respectively. For SLS C12, the LOD and LOQ were 0.07 and 2.33 mg/L, respectively. For AOS C14, the LOD and LOQ were 16.55 and 21.83 mg/L, respectively. The recoveries were 97.17-98.84% for LAS C10-C14, 97.94% for SLS C12, and 96.11% for AOS C14. The established methods provide acceptable precision and accuracy. Our methods could be useful for the detection of anionic surfactants in dishwashing detergents.
Recently, polycosanol products have been actively introduced into the domestic market based on their potential biological activity. The analytical procedures of polycosanol, which determine the TMS derivatives of each polycosanol with GC-FID, were presented for inspection of standards. However, the conventional procedures are not readily applicable to polycosanol emulsion which is prepared by mixing polycosanol and water together with emulsifiers because of their interferences. Therefore, the quantitative analytical procedure of polycosanol emulsion with GC-MS at selected ion monitoring mode was proposed and its validity was inspected for standardization. The analysis of polycosanol standards according to the proposed procedure showed the following values: 90.5% for reproducibility; 0.48-5.83% for the RSD; 0.000479-0.001314 μg/μL for the LOD; 0.001452-0.003983 μg/μL for the LOQ; 80.38-108.98% for accuracy; and 0.01-4.88% for the coefficients of variation. The average reproducibilities of polycosanol emulsions according to the current procedure were 87.43±4.48% and 88±2.2%, respectively, which were within the 80-120% range of the designated amounts. Therefore, it was found that the proposed analytical procedure with GC-MS at SIM mode in this study would be promising for the accurate quantitative analysis of polycosanol emulsion.
Muffin was developed using blueberry powder and the shelf life of the muffin packaged in modified atmosphere was determined. Blueberry was freeze-dried and milled to prepare powder. As the concentration of blueberry powder increased from 0 to 15% (w/w), hardness and gumminess also increased (p<0.05). The Hunter L and b values of the crust and crumb of muffin decreased as the concentration increased, while their Hunter a values increased. Blueberry powder concentrations of 10 and 15% resulted in high preference in taste, texture, and overall acceptability. Blueberry muffin containing powder at 10% was packaged in modified atmosphere (MA). The optimum gas for modified atmosphere packaging (MAP) of the muffin was the mixture of carbon dioxide (CO2) and nitrogen (N2) (7:3), which improved microbial stability without altering muffin hardness. The shelf life of modified atmosphere packaged blueberry muffin was determined using the accelerated life test. The shelf life values for MA packaged blueberry muffin stored at 25 and 35°C were predicted as 21 and 5 d, respectively. Further, the Q10 values for 25- 35°C and 35-45°C were determined as 4.2 and 2.9, respectively. The MAP can preserve blueberry muffin for 3 weeks at 25°C, without the external addition of preservatives.
The effect of drying temperature and steaming time on the browning and antioxidant activity of dried Platycodon grandiflorum was investigated. Thirteen treatment conditions were constructed using central composite face-centered design containing 5 center points. Drying temperature and steaming time (as factors) were 45-75oC and 15-45 min. According to treatment conditions, dried Platycodon grandiflorum was assessed for color characteristic, degree of browning, total polyphenol content, and DPPH and ABTS free radical scavenging (as responses). When increasing drying temperature within a given steaming time, dried Platycodon grandiflorum exhibited decreased lightness, increased redness, degree of browning, and total polyphenol contents, and enhanced antioxidant activities. Except for total polyphenol contents and antioxidant activities, steaming time within a given drying temperature exhibited similar effects to those observed in drying temperature. However, steaming time did not likely influence total polyphenol contents and revealed the opposite trends observed for the effect of drying temperature on their antioxidant activities. The overall results suggested that drying temperature was the main factor for changes in the browning and antioxidant activity of dried Platycodon grandiflorum.
The effect of temperature distribution in the retort on the degree of sterilization and the product quality was investigated. The temperature distribution in the retort chamber in an industrial scale of retort was evaluated. The target processing temperature was set to 121.1°C based on the standard sterilization process for C. botulinum. The temperature distributions at several points in the retort chamber were measured during the sterilization process, such as the heating (25°C to 121.1°C), holding (121.1°C), and cooling (121.1°C to 25°C) processes. Fo-values at different positions in the chamber were evaluated and compared. Potato cubes were used as a control sample to obtain the heat penetration curve for evaluating the degree of sterilization and the quality changes. Potato samples in cube shape (13×13×13 mm) were prepared and packed in 5 kg of retort pouch pack. A significant temperature deviation occurred during the cooling process and it significantly affected the degree of sterilization.
Recently, amorphous granular starch (AGS) or non-crystalline granular starch (NGS) is of great interest because it has specific physicochemical properties compared to native starches. Various approaches have been taken to prepare gelatinized starch while still maintaining its granular shape. The granular cold-water soluble starch (GCWS) can be prepared by alcoholic-alkaline treatment or by using liquid ammonia and ethanol. However, these starches exhibit significant deformation and shrinking, and chemical treatments may raise safety issues for their potential food applications. Therefore, in this study, the optimization of preparation method for amorphous granular potato starch (AGPS) was investigated using ethanol and heat treatments. Response surface methodology (RSM) and central composite design (CCD) were used to find the optimum conditions for AGPS preparation based on granule integrity and birefringence. Optimum conditions were 53.3% ethanol and 93.87oC heat treatment for 15 min. Prepared AGPS maintained its granular structure and lost birefringence, crystallinity, and DSC amylopectin melting peak, suggesting that proper AGPS could be made using optimized conditions.
The purpose of this study was to investigate the possibility of the use of enzymatically hydrolyzed anchovy protein (eHAP) to enhancing of salty taste in dried pollack soup and mungbean sprout when it was applied in cooking. The salty taste enhancing effect was evaluated by comparing the dried pollack soup samples with eHAP added and the control sample containing 0.6% NaCl, and the result showed that the salty taste enhancing effect was 15%, 25%, 42%, and 46% in the samples with 0.1%, 0.5%, 1.0%, and 1.5% eHAP added, respectively. The overall acceptability was decreased as the eHAP addition was increased. In case of a bean sprout containing 0.7% NaCl, the salty taste enhancing effect was 29%, 18%, 16%, and 31% in the 0.1%, 0.5%, 1.0%, and 1.5% eHAP added, respectively. The lightness and yellowness were decreased as the eHAP addition was increased in both the dried pollack soup and the bean sprout. The pH of the dried pollack soup was decreased but the pH of the bean sprout dish was increased as the addition of eHAP was increased. The application of eHAP to food showed a significant salty taste enhancing effect, but the effect was dependent on the type of foods.
The purpose of this study was to investigate the possibility of the use of enzymatically hydrolyzed anchovy protein (eHAP) to enhance the salty taste in salad dressing when it was applied in cooking. The intensity of the salty taste was enhanced by 5-11% when 0.1-1.5% eHAP was added. This indicates that the salty taste enhancing effect was decreased as the amount of added eHAP was increased. However, there are no significant differences between the control and samples (p>0.05). The overall preference was increased as the amount of added eHAP was increased. The preference value was the highest when 1.0% of eHAP was added, while it was slightly lower when 1.5% of eHAP was added. This may be because the content of free amino acids with a bitter taste contained in eHAP was increased. The pH value was increased as the amount of added eHAP was increased. With respect to the chromaticity, the lightness and yellowness were increased but the redness was not significantly changed when the amount of added eHAP was increased. It was found that the addition of eHAP to a salad dressing enhanced the salty taste and the preference, but the enhancement was not significant.