초고성능 콘크리트(UHPC)는 높은 압축강도를 위해 일반콘크리트에 비해 높은 시멘트 및 바인더 함량을 가지고 있다. UHPC 의 시멘트량을 줄이기 위한 연구가 지속적으로 수행되었으며, 그중 플라이애시와 고로슬래그는 각각 20%, 50% 수준까지는 강도 저하 없이 적용 가능하다는 연구가 확인되었다. 본 연구에서는 UHPC 배합에서 시멘트를 플라이애시와 고로슬래그로 치환하여 강도변화 및 유동성 변화를 분석하였다. 압축강도는 플라이애시 치환 실험체가 가장 낮으며, 고로슬래그는 치환 전과 유사한 강도를 보였다. 휨강도 는 고로슬래그, 플라이애시 치환 실험체 모두 감소하였다. 그러나 유동성은 플라이애시, 고로슬래그 실험체 모두 향상되면서 고성능감 수제 저감이 가능한 것을 확인하였다.
This paper investigates the effects of aspect ratio and volume fraction of hooked-end normal-strength steel fibers on the compressive and flexural properties of high-strength concrete with specified compressive strength of 60 MPa. Three types of hooked-end steel fibers with aspect ratios of 64, 67 and 80 were considered and three volume fractions of 0.25%, 0.50% and 0.75% for each steel fiber were respectively added into each high-strength concrete mixture. The test results indicated that the addition of normal-strength steel fibers is effective to improve compressive and flexural properties of high-strength concrete but fiber aspect ratio had little effect on the modulus of elasticity and compressive strength. As steel fiber content and aspect ratio increased, flexural beahvior of notched high-strength concrete beams was effectively improved.
고성능 콘크리트(HPC) 압축강도는 추가적인 시멘트질 재료의 사용으로 인해 예측하기 어렵고, 개선된 예측 모델의 개발이 필수적 이다. 따라서, 본 연구의 목적은 배깅과 스태킹을 결합한 앙상블 기법을 사용하여 HPC 압축강도 예측 모델을 개발하는 것이다. 이 논 문의 핵심적 기여는 기존 앙상블 기법인 배깅과 스태킹을 통합하여 새로운 앙상블 기법을 제시하고, 단일 기계학습 모델의 문제점을 해결하여 모델 예측 성능을 높이고자 한다. 단일 기계학습법으로 비선형 회귀분석, 서포트 벡터 머신, 인공신경망, 가우시안 프로세스 회귀를 사용하고, 앙상블 기법으로 배깅, 스태킹을 이용하였다. 결과적으로 본 연구에서 제안된 모델이 단일 기계학습 모델, 배깅 및 스태킹 모델보다 높은 정확도를 보였다. 이는 대표적인 4가지 성능 지표 비교를 통해 확인하였고, 제안된 방법의 유효성을 검증하였다.
PURPOSES: The objective of this study is to evaluate the properties of high-performance concrete and compare them with the properties of ternary blended cement (OPC 60% : BFS 30% : FA 10%) as applied to all-in-one bridge decks. High-performance concrete modified with styrene-butadiene latex (SB latex) was evaluated for strength development and durability through its compressive strength and chloride ion diffusion coefficient.
METHODS: The compressive strength test was conducted according to KS F 2405, and the average value of the three specimens was used as the result at each stage. The chloride ion diffusion test was performed at 28 days, 56 days, and 365 days according to NT BUILLD 492. The chloride ion penetration test was conducted according to ASTM C 1202.
RESULTS: For the compressive strength of the high-performance concrete, the blast furnace slag 40% replacement (BFS40) mixture had the most similar results to those of the ternary blended cement. The BFS40 mixture exhibited a lower compressive strength at 3 days than the latex modified concrete (LMC) mixture used for the bridge deck pavement, whereas it exhibited a 3.7-9.8% higher compressive strength at 7 days. In addition, the BFS40 mixture had the lowest diffusion coefficient, which was 49.1~59.0% lower than that of the LMC mixture. Mixing with latex tended to decrease in charge passed compared to Plain which is only used ternary blended cement, and showed excellent watertighness (rated “very low”), which is lower than 1,000 coulombs in all mixtures with latex.
CONCLUSIONS : The BFS40 mixture exhibited excellent compressive strength, chloride ion permeability resistance, and the lowest chloride ion diffusion coefficient although it included a small amount of latex, which makes it more expensive than the current LMC mixture. It is believed that it is possible to secure excellent economic efficiency and durability by using lesser latex than that in the LMC mixture and using a mixture of the blast furnace slag instead.
본 연구는 초고성능 콘크리트의 성능을 보다 향상시키기 위해 현재 콘크리트 보강에 사용하는 섬유들을 조합한 복합 섬유를 제작하여 복합섬유 혼입 초고성능 콘크리트의 강도 특성을 분석하였다. 복합섬유 4종과 단일섬유 3종을 각각 혼입하여 유동성과 압축, 휨강도 실험을 진행하였다. 복합섬유와 단일섬유 혼입 시험체 모두 유동성 평가를 만족하였으며, 단일섬유가 조금 더 우수한 성능을 나타내었다. 강도 평가결과 파라아라미드 섬유와 강섬유를 조합한 복합섬유 2종이 가장 우수한 결과를 나타내었으며, 복합섬유 직경 차이에 따라 압축 및 휨강도 보강효과가 다르게 나타난 것을 확인할 수 있었다. 압축강도 감소를 최소화하며 휨강도를 증가시킨 결과를 통해, 복합섬유는 단일섬유 간의 단점을 서로 보완할 수 있을 것으로 판단되며, 본 연구를 통해 차후 콘크리트의 다양한 재료적 특성을 보강하는 복합섬유도 충분히 제작 가능할 것으로 판단된다.
This paper presents the design, analysis, and experimental evaluations of precast reinforced UHPC (ultra high-performance concrete) beams with a new design concept of non-uniform flexural members. With outstanding mechanical properties of UHPC which can develop the compressive strength up to 200MPa, the tensile strengths up to 8~20MPa and the tensile strain up to 1~5%, a non-uniform structural shape of UHPC flexural beams were optimally designed using three-dimensional finite element analysis. The experiments were carried out and compared with the design strength in order to verify the performance of them. Proposed non-uniform UHPC beams were evaluated by a series of three-point beam loading test as well as estimated by design bending and shear strength of members. The newly designed UHPC beams show excellent performances not only in transverse load capacities but also in deformation capacities.
In current research, it was attempted a preliminary design and evaluation of non-uniform ultra high-strength concrete (UHSC) truss members. UHSC used here has the compressive strength of 180 MPa, the tensile strength of 8 to 20 MPa, and the tensile strain after cracks up to 2%. By the three-dimensional finite element stress analysis as well as strut-tie approach on concrete solid beams, the non-uniform truss shape of UHSC truss was designed with the architectural esthetic concept. In a series of examples, to compare with conventional concrete members, the proposed UHSC truss members have advantages in capabilities of the slender design with minimum weight with high performances under transverse loadings as well as the aesthetically non-uniform design for spatial structures.
It is a well known that concrete is strong for compression and weak for tension. For reinforcing the weakness and improving the performance about concrete, various methods are used. Fiber reinforced concrete that is one of them has been investigated in this study. The function of fiber in concrete is to improve the stress strain relation and toughness, crack control. It’s applied from normal strength concrete to ultra-high performance concrete. But it is essential to disperse fiber uniformly and to prevent aggregation of fiber in concrete, in order that fiber reinforced concrete show the sufficient performance. The various properties of fiber affect the essential properties, for instance, length and diameter of fiber, source, etc. So, this study evaluated the ultra-high performance concrete with mixed in composite fiber.
This study investigates the flexural shear strength of ultra high performance concrete I-girder. The effect of aspect ratio on the flexural - shear strength of UHPC was analyzed using finite element analysis. The UHPC I-type girder was modeled using 3D shell elements and analyzed using geometric and material nonlinear analysis. The boundary condition is simple support condition and a displacement load is applied to the center of the upper flange. The results shows that shear strength decreased as the aspect ratio increased and the bending-shear failure of UHPC I-girder does not occur even at larger moment than ordinary concrete due to the cross-linking action of steel fiber.
In korea, only small amount of nonstructural lightweight concrete is being used through indirect effects such as heat insulation property and soundproofing rather than structural elements due to lack of structural lightweight aggregates and lack of understanding about lightweight concrete development, etc. That`s why structural lightweight concrete to reduce weight has not been put to practical use. This study is a part of high strength lightweight aggregate concrete researches using lightweight aggregates and the purpose of this study is to find out the basic physical characteristics and tension cracking fracture characteristics of lightweight concrete. Crack Mouth Opening Displacement is measured through 3 point flexure experiment about notch beam. Load-CMOD characteristics are examined through rules of countries, characteristics of lightweight concrete and tension cracking fracture experiments. The degree of tensile characteristic alteration according to size changes of specimen and the characteristics about crack surface are analyzed. The changes of softening curve are analyzed and fracture energy is drawn through inverse analysis by the obtained Load-CMOD curve. To decide fracture energy and analysis parametric, inverse analysis is conducted and Ant Colony Method is conducted for optimization and then a way to find out optimal parameterization fracture energy is suggested.
Grouted connections have been widely used for offshore structures such as connection method of jacket and mono-pile structures. It is recommended high strength concrete for grouting between pile and sleeve because it is so rapidly hardening that helpful to fatigue strength. This study investigates axial strength of pile to sleeve grouted connections made by 130MPa of high strength concrete. Push-out test were performed to evaluate the axial strength of the grouted connections with different shear-key spacing.
In the moment frame subjected to earthquake loads, beam-column joint is structurally important for ductile behavior of a system. ACI Committee 352 proposed guidelines for designing beam-column joint details. The guidelines, however, need to be updated because of the lack of data regarding several factors that may improve the performance of joints. The purpose of this study is to investigate the seismic performance of reinforced concrete exterior joints with high-strength materials and unbonded tendons. Three specimens with different joint shear demand-to-strength ratios were constructed and tested, where headed bars were used to anchor the beam bars into the joint. All specimens showed satisfactory seismic behavior including moment strength of 1.3 times the nominal moment, ductile performance (ductility factor = at least 2.4), and sufficiently large dissipated energy.
UHPC(Ultra High Performance Concrete) is used widely with its remarkable performance, such as strength, ductility and durability. Since the fibers in the UHPC can control the tensile crack, the punching shear capacity of UHPC is higher than that of the conventional concrete. In this paper, seven slabs with different thickness and fiber volume ratio were tested. The ultimate punching shear strength was increased with the fiber volume ratio up to 1%. The shear capacity of specimens with the fiber content 1% and 1.5% do not have big differences. The thicker slab has higher punching shear strength and lower deformation capacity. The critical sections of punching shear failure were similar regardless of the fiber volume ratio, but it were larger in thicker slab.