Health concerns related to particulate matter (PM) pollution are on the rise globally. This study investigates the effects of the main components of PM on human airway epithelial cells (Calu-3), focusing on three distinct types: PM10-bound PAHs (including Benzo[a]anthracene and Benzo[b]fluoranthene), PM10-bound trace elements (containing arsenic and lead), and PM2.5-bound ions (comprising sodium and calcium). Calu-3 cells were exposed to these PM components at concentrations ranging from 2 to 100 μg/mL. Unexposed Calu-3 cells exhibited a 60% increase in metabolic activity after 12 hours. In contrast, exposure to PM components resulted in significant reductions in cell viability, with PM10-bound PAHs and PM10-bound trace elements causing decreases of 54% and 55% respectively, and PM2.5-bound ions leading to a 63% reduction at 100 μg/mL. Additionally, there was found to be a notable rise in the expression of proinflammatory cytokines IL-8 and TNF-α. Specifically, IL-8 levels increased by 456%, and TNF-α levels rose by 660% after 12 hours of exposure to PM2.5-bound ions. These findings indicate that the size and composition of fine dust particles play a critical role in their cytotoxic effects, contributing to increased cell death, membrane damage, and necrosis in airway epithelial cells.
Human bitter taste-sensing type 2 receptors (hTAS2Rs) are expressed in various human tissues and may be associated with various cell signaling pathways, cell progression, and cell physiology in each tissue. hTAS2Rs can be a potential drug target because it is also expressed in some cancer cells. Xanthorrhizol (XNT) has various biological activities, such as anticancer, antimicrobial, anti-inflammatory, and antioxidant. XNT produces a bitter taste, but the specific hTAS2R activated is unknown, and the hTAS2R-mediated effect of XNT on cancer cells has not been studied. This study discovered the target receptor of XNT among 25 hTAS2Rs and confirmed the possibility of the hTAS2R-mediated inhibition of cancer cell proliferation. XNT activated only one receptor, hTAS2R38 (EC50=1.606±0.021 g/mL), and its activity was inhibited by probenecid, a hTAS2R38 antagonist. When HepG2 and MCF-7 cells were treated with XNT or phenylthiocarbamide (PTC), a known hTAS2R38 agonist, both chemicals inhibited cancer cell proliferation. XNT targets the human bitter taste receptor TAS2R38 and inhibits the proliferation of HepG2 and MCF-7 cells mediated by TAS2R38. This suggests that TAS2R38 may be a new target for disease treatment and a potential new factor for drug development.
Background: In healthy dentin conditions, odontoblasts have an important role such as protection from invasion of pathogens. In mammalian teeth, progenitors such as mesenchymal stem cells (MSCs) can migrate and differentiate into odontoblast-like cells, leading to the formation of reparative dentin. For differentiation using stem cells, it is crucial to provide conditions similar to the complex and intricate in vivo environment. The purpose of this study was to evaluate the potential of differentiation into odonto/ osteoblasts, and compare co-culture with/without epithelial cells. Methods: MSCs and epithelial cells were successfully isolated from dental tissues. We investigated the influences of epithelial cells on the differentiation process of dental pulp stem cells into odonto/osteoblasts using co-culture systems. The differentiation potential with/without epithelial cells was analyzed for the expression of specific markers and calcium contents. Results: Differentiated odonto/osteoblast derived from dental pulp tissue-derived mesenchymal stem cells with/without epithelial cells were evaluated by qRT-PCR, immunostaining, calcium content, and ALP staining. The expression of odonto/ osteoblast-specific markers, calcium content, and ALP staining intensity were significantly increased in differentiated cells. Moreover, the odonto/osteogenic differentiation capacity with epithelial cells co-culture was significantly higher than without epithelial cells co-culture. Conclusions: These results suggest that odonto/osteogenic differentiation co-cultured with epithelial cells has a more efficient application.
This study investigated major constituents and anti-inflammatory effects of an ethanol extract of Platycodon grandiflorum leaves. Through HPLC analysis, chlorogenic acid and luteolin-7-O-glucoside were identified as predominant constituents in the ethanol extract. Their anti-inflammatory effects were evaluated using murine macrophage (RAW 264.7 cells) and human lung carcinoma cells (NCI-H292 & A549). The ethanol extract significantly (p<0.01) inhibited the production of nitrite, interleukin-6 (IL-6), and prostaglandin E2 (PGE2) induced by lipopolysaccharide (LPS) in RAW 264.7 cells. Furthermore, the ethanol extract suppressed the expression of cyclooxygenase-2 (COX-2) and inducible NO synthase (iNOS) proteins in RAW 264.7 cells stimulated with LPS. In NCI-H292 and A549 cells, treatment with the ethanol extract significantly (p<0.05) decreased levels of pro-inflammatory cytokines IL-6 and IL-8 induced by IL-1β. The phosphorylation of ERK rather than JNK in the mitogen-activated protein kinase signaling pathway was observed to be a more important mediator in the down-regulation of pro-inflammatory cytokines in NCI-H292 cells. These findings suggest that the ethanol extract of Platycodon grandiflorum leaves containing luteolin-7-O-glucoside exhibits promising anti-inflammatory properties.
The present study was designed to investigate the antiproliferative activity and molecular mechanisms of Bibimbap in HT-29 human colorectal adenocarcinoma cells. Bibimbap extract inhibited the proliferation of HT-29 cells by 50% at a concentration of 10.1±0.17 mg/mL for 48 h. The population of live cells decreased slightly, and the morphology changed with a reduction in cell volume (pyknosis) with Bibimbap. Treatment with 5 mg/mL of Bibimbap resulted in slight cell shrinkage. Furthermore, as the Bibimbap dose increased to 10 mg/mL, these characteristics were more evident, and HT-29 cells exhibited partial detachment by staining with the DNA-binding dye Hoechst 33342. Flow cytometric analysis by Annexin V and PI double staining showed that Bibimbap increased the levels of apoptosis. Analysis of the mechanism of these events showed that Bibimbap-treated cells exhibited a mitochondria-dependent apoptotic pathway through the modulation of caspase-3, caspase-8, caspase-9, and poly-ADP ribose polymerase, as well as Bax and Bcl-2 expression in dose- and time-dependent manners. Consequently, Bibimbap exerts a significant antiproliferative effect on HT-29 human colorectal adenocarcinoma cells.
Bioactive flavonoids have been shown to improve the biological activity of stem cells derived from different sources in tissue regeneration. The goal of this study was to see how naringin, a natural flavonoid discovered in citrus fruits, affected the biological properties of human dental pulp stem cells (HDPSCs). In this study, we found that naringin increases the migratory ability of HDPSCs. Naringin increased matrix metalloproteinase-2 (MMP-2) and C-X-C chemokine receptor type 4 (CXCR4) mRNA and protein expression in HDPSCs. ARP100, a selective MMP-2 inhibitor, and AMD3100, a CXCR4 antagonist, both inhibited the naringin-induced migration of HDPSCs. Furthermore, naringin increased osteogenic differentiation of HDPSCs and the expression of the osteogenic-related marker, alkaline phosphatase in HDPSCs. Taken together, our findings suggest that naringin may be beneficial on dental tissue or bone regeneration by increasing the biological activities of HDPSCs.
Ulva compressa Linnaeus (UCL) is a green algae seaweed that performs photosynthesis and is used as a food material in some Asian regions including Korea. It is known to be the dominant species in copper ion-contaminated seas, and many studies on copper ion resistant mechanisms have been reported. UCL is known to have an excellent antioxidant effect, but limited information is available regarding its other physiological activities. In this study, we investigated the anticancer activity of 30% prethanol extracts of Ulva compressa Linnaeus (30% PeUCL) and the underlying mechanisms of its activity on human FaDu hypopharyngeal squamous carcinoma cells. The 30% PeUCL extracts suppressed FaDu cell viability without affecting normal cells (L929), as determined by MTT and viability assays. Furthermore, the 30% PeUCL extracts induced apoptosis, as determined by DAPI staining. The 30% PeUCL extracts inhibited colony formation effectively as well as wound-healing of FaDu cells, even at noncytotoxic concentrations. In addition, 30% PeUCL extracts induced apoptosis significantly through proteolytic cleavage of caspase-3, -7, and -9, and poly (ADP-ribose) polymerase, and by downregulation of Bcl-2 and upregulation of Bax in FaDu cells, as determined by Western blot analysis. Collectively, these results suggest that the inhibitory effect of 30% PeUCL extracts on the growth of oral cancer cells, colony formation and wound-healing may be mediated by caspase- and mitochondrial-dependent apoptotic pathways in human FaDu hypopharyngeal squamous carcinoma cells. Therefore, 30% PeUCL extracts can be administered as a natural chemotherapeutic drug for the treatment of human oral cancers.
The objective of the present study was to investigate the molecular mechanisms involved in the activity of [10]-gingerol using A2058 human melanoma cells. [10]-Gingerol inhibited the proliferation of A2058 cells by 50% at a concentration of 52 μM. Such inhibition was dose-dependent accompanied by morphological change indicative of apoptosis. Furthermore, flow cytometric analysis by Annexin V and PI double staining showed that [10]-gingerol increased the extent of apoptosis. Analysis of the mechanism of these events indicated that [10]-gingerol increased the ratio of Bax to Bcl-2, resulting in the activation of caspase-9, caspase-3, and poly-ADP-ribose polymerase in a dose-dependent manner.
The purpose of this study was to investigate the biological activity of fucoidan, a sulfur-containing polysaccharide, on cytotoxicity and apoptosis in the human HT-29 colorectal cancer cell line using cell viability, Flow cytometry, Western blot, and RT-PCR analyses. Fucoidan inhibited the proliferation of HT-29 cells by 39.6% at a concentration of 100 μg/mL for 72 h. The inhibition was dose-dependent and accompanied by apoptosis. Flow cytometric analysis showed that fucoidan increased early apoptosis and late apoptosis by 65.84% and 72.09% at concentrations of 25 and 100 μg/mL, respectively. Analysis of the mechanism of these events indicated that fucoidan-treated cells exhibited increases in the activation of caspase-3, caspase-8, and PARP in a dose-dependent manner. These results suggest that fucoidan may inhibit the growth of human colorectal cancer cells by various apoptosis-promoting effects, as well as by apoptosis itself.
Comparing the quality characteristics of kimchi were measured and anticancer effects using AGS human gastric cancer cells were observed. Five kinds of kimchi samples were made of Kanghwa Baek kimchi (KB), Kangwha Turnip kimchi (KT), Turnip: Chinese cabbage = 1:1 Baek kimchi (T1B1), Turnip:Chinese cabbage = 4:1 Baek kimchi (T4B1), Turnip mul kimchi (T). As a result T kimchi showed the best fermentation characteristics among the five samples. T kimchi had a lower percentage of the total number of aerobic bacteria, while the number of lactobacillus was higher than that of other samples. The mRNA and protein expression levels of apoptosis-related factors found that T kimchi significantly increases the mRNA expression levels of caspases-3 and caspases-9 in AGS human gastric cancer cells as compared to the other kimchi samples. It showed high anticancer effects in the order of T, T1B1, and KB kimchi. As the anticancer effect of Turnip mul kimchi made only of turnip was higher, the higher the turnip content, the higher the anticancer effect. These results show that there were changes in fermentation characteristics such as pH, acidity, number of lactic acid bacteria, and anticancer effects according to the ratio of turnip and cabbage.
To date, the development of anticancer drugs has been conducted using two-dimensional (2D) cell culture systems. However, since cancer cells in the body are generated and developed in three-dimensional (3D) microenvironments, the use of 2D anticancer drug screening can make it difficult to accurately evaluate the anticancer effects of drug candidates. Therefore, as a step towards developing a cancer cellfriendly 3D microenvironment based on a combination of vinylsulfone-functionalized polyethylene glycol (PEG-VS) with dicysteine-containing crosslinker peptides with an intervening matrix metalloproteinase (MMP)-specific cleavage site, the types of MMPs secreted from human hepatocarcinoma HepG2 cells, a representative cancer cell, were analyzed transcriptionally and translationally. MMP3 was confirmed to be the most highly expressed protease secreted by HepG2 cells. This knowledge will be important in the design of a crosslinker necessary for the construction of PEG-based hydrogels customized for the 3D culture of HepG2 cells.
Humulus japonicus (HJ) is a widely used herbal medicine for pulmonary tuberculosis, hypertension, leprosy, and venomous wounds in Asia, particularly in China. Although HJ has certain physiological activities, such as longitudinal bone growth, antioxidation and alleviation of rheumatism, its anticancer activities, other than in colorectal and ovarian cancer, are yet to be studied. In this study, we investigated the anti-cancer activity and mechanism of methanol extracts of HJ (MeHJ) against human FaDu hypopharyngeal squamous carcinoma cells. MeHJ suppressed FaDu cell viability without affecting normal cells (L929), which was demonstrated using the MTT and Live & Dead assays. Furthermore, MeHJ effectively inhibited colony formation of FaDu cells, even at non-cytotoxic concentrations, and significantly induced apoptosis through the proteolytic cleavage of caspase-9, -3, -7, poly (ADP-ribose) polymerase and through the downregulation of BCL-2 and upregulation of BAX in FaDu cells, as determined by DAPI staining, flow cytometry, and western blot analyses. Collectively, these findings suggest that the inhibitory effects of MeHJ on the growth and colony formation of oral cancer cells may be mediated by caspase- and mitochondrial-dependent apoptotic pathways in human FaDu hypopharyngeal squamous carcinoma cells. Therefore, MeHJ has the potential to be used as a natural chemotherapeutic drug against human oral cancer.
Mesenchymal stem cells (MSCs) have been recognized as a therapeutic tool for various diseases due to its unique ability for tissue regeneration and immune regulation. However, poor survival during in vitro expansion and after being administrated in vivo limits its clinical uses. Accordingly, protocols for enhancing cell survivability is critical for establishing an efficient cell therapy is needed. CDDOMe is a synthetic C-28 methyl ester of 2-cyano-3,12-dioxoolean-1,9-dien-28-oic acid, which is known to stimulate nuclear factor erythroid 2-related factor 2 (Nrf2)- antioxidant response element (ARE) pathway. Herein, report that CDDO-Me promoted the proliferation of MSCs and increased colony forming units (CFU) numbers. No alteration in differentiation into tri-lineage mesodermal cells was found after CDDO-Me treatment. We observed that CDDO-Me treatment reduced the cell death induced by oxidative stress, demonstrated by the augment in the expression of Nrf2-downstream genes. Lastly, CDDO-Me led to the nuclear translocation of NRF2. Our data indicate that CDDO-Me can enhance the functionality of MSCs by stimulating cell survival and increasing viability under oxidative stress.
본 연구는 미역(Undaria pinnatifida) 추출물과 쇠미역(Costaria costata) 추출물의 항산화 활성 및 HepG2 세포의 알코올로 인한 산화 손상에 대한 보호 효과를 연구하였다. 미역과 쇠미역 추 출물의 총 폴리페놀과 플라보노이드 함량은 70% 에탄올 추출물에서 가장 높았다. 또한 미역과 쇠미역 70% 에탄올 추출물의 DPPH (IC50 0.33±0.21, 0.48±0.47 mg/ml), ABTS (IC50 0.34±0.30, 0.47±0.17 mg/ml) 라디칼 소거 활성이 열수 추출물 및 10% 에탄올 추출물 보다 높았다. 추출 물의 간 보호 효과를 확인하기 위하여 HepG2 세포에 알코올 산화 스트레스를 유발하여 MTT 분석을 이용하여 세포 생존력을 측정하였다. 미역 및 쇠미역 열수 추출물은 알코올 처리군 (73.95%) 대비 세포 생존율은 각각 89.91~97.63% 및 84.99~90.54%로 농도 의존적으로 증가시 켰다. 본 연구는 미역과 쇠미역 추출물이 간 보호 및 항산화 효과를 나타냄을 확인하였고 알코 올 산화 손상에 대한 간 보호 소재로 활용될 수 있을 것으로 사료된다.
Despite evidence that bacteria-sensing Toll-like receptors (TLRs) are activated in salivary gland tissues of Sjogren syndrome (SS) patients, the role of oral bacteria in SS etiopathogenesis is unclear. We previously reported that two SS-associated oral bacteria, Prevotella melaninogenica (Pm) and Rothia mucilagenosa (Rm), oppositely regulate the expression of major histocompatibility complex class I (MHC I) in human salivary gland (HSG) cells. Here, we elucidated the mechanisms underlying the differential regulation of MHC I expression by these bacteria. The ability of Pm and Rm to activate TLR2, TLR4, and TLR9 was examined using TLR reporter cells. HSG cells were stimulated by the TLR ligands, Pm, and Rm. The levels of MHC I expression, bacterial invasion, and viability of HSG cells were examined by flow cytometry. The hypoxic status of HSG cells was examined using Hypoxia Green. HSG cells upregulated MHC I expression in response to TLR2, TLR4, and TLR9 activation. Both Pm and Rm activated TLR2 and TLR9 but not TLR4. Rm-induced downregulation of MHC I strongly correlated with bacterial invasion and cell death. Rm-induced cell death was not rescued by inhibitors of the diverse cell death pathways but was associated with hypoxia. In conclusion, Pm upregulated MHC I likely through TLR2 and TLR9 activation, while Rm-induced hypoxia-associated cell death and the downregulation of MHC I, despite its ability to activate TLR2 and TLR9. These findings may provide new insight into how oral dysbiosis can contribute to salivary gland tissue damage in SS.
Nypa fruticans Wurmb (NFW) contains a large amount of phenolic acid and flavonoids, and is popular as a superfood in Myanmar. NFW has various biological activities, such as anti-inflammatory, anti-oxidant, and neuroprotective properties; however, the anti-cancer effect of NFW have not been reported. In this study, we investigated the anticancer activity of water extracts of NFW (WeNFW) and the underlying mechanism in human FaDu hypopharyngeal squamous carcinoma cells. The WeNFW inhibited FaDu cell growth in a dose-dependent manner without affecting normal cells (L929), as determined by an MTT assay and Live and Dead assay. In addition, the concentrations of WeNFW without cytotoxicity (0.025, 0.05, and 0.1 mg/mL) inhibited wound healing and colony formation. Furthermore, WeNFW significantly induced apoptosis through the proteolytic cleavage of caspase-3 and -9, poly (ADP-ribose) polymerase, and downregulation of Bcl-2 and upregulation of Bax in FaDu cells, as determined by DAPI staining, FACS analysis, and western blot analysis. Taken together, these results suggest that WeNFW exhibits potent anti-cancer effects by suppressing the growth of oral cancer cells, wound healing and colony formation activity. Via mitrochondrial-dependent apoptotic pathways in human FaDu hypopharyngeal squamous carcinoma cells. Therefore, WeNFW can provide a natural chemotherapeutic drug for oral cancer in humans.
Associations between periodontal infection and cardiovascular disease have been documented. Porphyromonas gingivalis is a well-established periodontal pathogen, and tissue factor (TF) is a key initiator of the coagulation cascade. In this context, P. gingivalis has been reported to enhance TF expression in human endothelial cells. The present study investigated the underlying mechanisms of TF induction by P. gingivalis in human umbilical vein endothelial cells. P. gingivalis increased TF expression in a dose- and time-dependent manner. Not only live bacteria but also glutaraldehyde-fixed bacteria increased TF expression to the same extent. However, sonicates of P. gingivalis did not induce TF expression. Cytochalasin D and SMIFH2, which are inhibitors of actin polymerization and actin nucleation, respectively, inhibited the TF expression induced by P. gingivalis . Finally, TF production was decreased or increased in the presence of various signaling inhibitors, including mitogen-activated protein kinases. These results suggest that P. gingivalis induces endothelial TF expression by a bacterial internalization-dependent mechanism and through diverse signal transduction mechanisms.
Asarum sieboldii Miq. (Aristolochiaceae) is a perennial herbaceous plant and has been used as traditional medicine for treating diseases, cold, fever, phlegm, allergies, chronic gastritis, and acute toothaches. Also, it has various biological activities, such as antiallergic, antiinflammatory, antinociceptive, and antifungal. However, the anticancer effect of A. sieboldii have been rarely reported, except anticancer effect on lung cancer cell (A549) of water extracts of A. sieboldii . This study investigated the anticancer activity of methanol extracts of A. sieboldii (MeAS) and the underlying mechanism in human FaDu hypopharyngeal squamous carcinoma cells. MeAS inhibited FaDu cells grown dose-dependently without affecting normal cells (L929), as determined by 3-(4,5-dimethylthiazol-2-yl)-2,5- diphenyl tetrazolium bromide and live and dead assay. In addition, concentration of MeAS without cytotoxicity (0.05 and 0.1 mg/mL) inhibited migration and colony formation. Moreover, MeAS treatment significantly induced apoptosis through the proteolytic cleavage of caspase-3, -7, -9, poly (ADP-ribose) polymerase, and downregulation of Bcl-2 and upregulation of Bax in FaDu cells, as determined by fluorescence-activated cell sorting analysis, 4`6-diamidino- 2-phenylindole stain, and western blotting. Altogether, these results suggest that MeAS exhibits strong anticancer effects by suppressing the growth of oral cancer cells and the migration and colony formation via caspase- and mitochondrial-dependent apoptotic pathways in human FaDu hypopharyngeal squamous carcinoma cells. Therefore, MeAS can serve as a natural chemotherapeutic for human oral cancer.