NKN [(Na,K)NbO3] is a candidate lead-free piezoelectric material to replace PZT [Pb(Zr,Ti)O3]. A single crystal has excellent piezoelectric-properties and its properties are dependent of the crystal orientation direction. However, it is hard to fabricate a single crystal with stoichiometrically stable composition due to volatilization of sodium during the growth process. To solve this problem, a solid solution composition is designed (Na,K)NbO3-Ba(Cu,Nb)O3 and solid state grain growth is studied for a sizable single crystal. Ceramic powders of (Na,K)NbO3-M(Cu,Nb)O3 (M = Ca, Sr, Ba) are synthesized and grain growth behavior is investigated for different temperatures and times. Average normal grain sizes of individual specimens, which are heat-treated at 1,125 oC for 10 h, are 6.9, 2.8, and 1.6 m for M = Ca, Sr, and Ba, respectively. Depending on M, the distortion of NKN structure can be altered. XRD results show that (NKN-CaCuN: shrunken orthorhombic; NKN-SrCuN: orthorhombic; NKN-BaCuN: cubic). For the sample heat-treated at 1,125 oC for 10 h, the maximum grain sizes of individual specimens are measured as 40, 5, and 4,000 m for M = Ca, Sr, and Ba, respectively. This abnormal grain size is related to the partial melting temperature (NKN-CaCuN: 960 oC; NKN-SrCuN: 971 oC; NKN-BaCuN: 945 oC).
Piezoelectric ceramic specimens with the Pb(Mg1/3Nb2/3)0.65Ti0.35O3 (PMN-PT) composition are prepared by the solid state reaction method known as the “columbite precursor” method. Moreover, the effects of the Li2O-Bi2O3 additive on the microstructure, crystal structure, and piezoelectric properties of sintered PMN-PT ceramic samples are investigated. The addition of Li2O-Bi2O3 lowers the sintering temperature from 1,200oC to 950oC. Moreover, with the addition of >5 wt.% additive, the crystal structure changes from tetragonal to rhombohedral. Notably, the sample with 3 wt.% additive exhibits excellent piezoelectric properties (d33 = 596 pC/N and Kp = 57%) and a sintered density of 7.92 g/cm3 after sintering at 950oC. In addition, the sample exhibits a curie temperature of 138.6oC at 1 kHz. Finally, the compatibility of the sample with a Cu electrode is examined, because the energy-dispersive X-ray spectroscopy data indicate the absence of interdiffusion between Cu and the ceramic material.
This study investigates the effect of MnO2 and CuO as acceptor additives on the microstructure and piezoelectric properties of 0.96(K0.5Na0.5)0.95Li0.05Nb0.93Sb0.07O3-0.04BaZrO3, which has a rhombohedral-tetragonal phase boundary composition. MnO2 and CuO-added 0.96(K0.5Na0.5)0.95Li0.05Nb0.93Sb0.07O3-0.04BaZrO3 ceramics sintered at a relatively low temperature of 1020 oC show a pure perovskite phase with no secondary phase. As the addition of MnO2 and CuO increases, the sintered density and grain size of the resulting ceramics increases. Due to the difference in the amount of oxygen vacancies produced by B-site substitution, Cu ion doping is more effective for uniform grain growth than Mn ion doping. The formation of oxygen vacancies due to B-site substitution of Cu or Mn ions results in a hardening effect via ferroelectric domain pinning, leading to a reduction in the piezoelectric charge coefficient and improvement of the mechanical quality factor. For the same amount of additive, the addition of CuO is more advantageous for obtaining a high mechanical quality factor than the addition of MnO2.
The impact of different mixing methods and sintering temperatures on the microstructure and piezoelectric properties of PZNN-PZT ceramics is investigated. To improve the sinterability and piezoelectric properties of these ceramics, the composition of 0.13Pb((Zn0.8Ni0.2)1/3Nb2/3)O3-0.87Pb(Zr0.5Ti0.5)O3 (PZNN-PZT) containing a Pb-based relaxor component is selected. Two methods are used to create the powder for the PZNN-PZT ceramics. The first involves blending all source powders at once, followed by calcination. The second involves the preferential creation of columbite as a precursor, by reacting NiO with Nb2O5 powder. Subsequently, PZNN-PZT powder can be prepared by mixing the columbite powder, PbO, and other components, followed by an additional calcination step. All the PZNNPZT powder samples in this study show a nearly-pure perovskite phase. High-density PZNN-PZT ceramics can be fabricated using powders prepared by a two-step calcination process, with the addition of 0.3 wt% MnO2 at even relatively low sintering temperatures from 800℃ to 1000℃. The grain size of the ceramics at sintering temperatures above 900℃ is increased to approximately 3 μm. The optimized PZNN-PZT piezoelectric ceramics show a piezoelectric constant (d33) of 360 pC/N, an electromechanical coupling factor (kp) of 0.61, and a quality factor (Qm) of 275.
The effects of an excess of Bi on the piezoelectric and dielectric properties of 0.60Bi1+xFeO3-0.40BaTiO3 (x = 0, 0.01, 0.03, 0.05, 0.07) were investigated. The ceramics were processed through a conventional solid state reaction method and then quenched after sintering at different temperatures in the range of 980~1070 oC. A single perovskite structure without any secondary phase was confirmed for all compositions and temperatures. It was found that excess Bi reduced the sintering temperatures, acted as a sintering aid and enhanced the properties in combination with quenching. Curie temperature (TC) was found to slightly increase due to the presence of excess Bi; electrical properties were also improved by quenching. At x = 0.03 and 1030 oC, remnant polarization (2Pr) was as high as 45.4 μC/cm2 and strain at 40 kV/cm was up to 0.176 %.
This work focuses on the electrical conduction mechanism in a lead free (Na0.5K0.5NbO3 ; NKN) ceramics system with LiNbO3 content of approximately critical concentration x ≥ 0.2. Lead free (1-x)(Na0.5K0.5)NbO3 - x(LiNbO3), NKN-LNx (x = 0.1, 0.2) ceramics were synthesized by solid-state reaction method. Crystal structures are confirmed by X-ray diffraction. The electric-mechanical bond coefficient k p decreases and the phase transition temperature T c increases with increasing x content, as determined by dielectric and piezoelectric measurements. The value of the real dielectric constants ε' and kBTε'' showed anomalies around T c (462 oC in the NKN-LN0.1 and 500 oC in the NKN-LN0.2). For the ionic conduction of mobile ions, the activation energies are obtained as EI = 1.76 eV (NKN-LN0.1) and EI = 1.55 eV (NKN-LN0.2), above T c, and EII = 0.78 (NKNLN0.1) and EII = 0.81 (NKN-LN0.2) below T c. It is believed that the conduction mechanisms of NKN-LNx ceramics are related to ionic hopping conduction, which may arise mainly due to the jumping of Li+ ions.
A powder injection molding process is developed and optimized for piezoelectric PAN-PZT ceramics. Torque rheometer experiments are conducted to determine the optimal solids loading, and the rheological property of the feedstock is evaluated using a capillary rheometer. Appropriate debinding conditions are chosen using a thermal gravity analyzer, and the debound specimens are sintered using sintering conditions determined in a preliminary investigation. Piezoelectric performance measures, including the piezoelectric charge constant and dielectric constant, are measured to verify the developed process. The average values of the measured piezoelectric charge constant and dielectric constant are 455 pC/N and 1904, respectively. Powder injection molded piezoelectric ceramics produced by the optimized process show adequate piezoelectric performance compared to press-sintered piezoelectric ceramics.
New lead-free piezoelectric ceramics 0.96[{Bi0.5 (Na0.84 K0.16)0.5}1-xLax(Ti1-y Nby)O3]-0.04SrTiO3 (BNKT-ST-LN, where x = y = 0.00 ≤ (x = y) ≤ 0.015) were synthesized using the conventional solid-state reaction method. Their crystal structure, microstructure, and electrical properties were investigated as a function of the La and Nb (LN) content. The X-ray diffraction patterns revealed the formation of a single-phase perovskite structure for all the LN-modified BNKT-ST ceramics in this study. The temperature dependence of the dielectric curves showed that the maximum dielectric constant temperature (Tm) shifted towards lower temperatures and the curves became more diffuse with an increasing LN content. At the optimum composition (LN 0.005), a maximum value of remnant polarization (33 C/cm2) with a relatively low coercive field (22 kV/cm) and high piezoelectric constant (215 pC/N) was observed. These results indicate that the LN co-modified BNKT-ST ceramic system is a promising candidate for lead-free piezoelectric materials.
Presently, the most promising family of lead-free piezoelectric ceramics is based on K0.5Na0.5NbO3(KNN). Lithium, silver and antimony co-doped KNN ceramics show high piezoelectric properties at room temperature, but often suffer from abnormal grain growth. In the present work, the (Ba0.85Ca0.15)(Ti0.88Zr0.12)O3 component, which has relaxor ferroelectric characteristics, was doped to suppress the abnormal grain growth. To investigate this effect, Lead-Free 0.95(K0.5Na0.5)0.95Li0.05NbO3-(0.05-x)AgSbO3-x(Ba0.85Ca0.15)(Ti0.88Zr0.12)O3[KNLN-AS-xBCTZ] piezoelectric ceramics were synthesized by ball mill and nanosized-milling processes in lead-Free 0.95(K0.5Na0.5)0.95Li0.05NbO3-(0.05-x)AgSbO3 in order to suppress the abnormal grain growth. The nanosized milling process of calcined powders enhanced the sintering density. The phase structure, microstructure, and ferroelectric and piezoelectric properties of the KNLN-AS ceramics were systematically investigated. XRD patterns for the doped and undoped samples showed perovskite phase while tetragonality was increased with increasing BCZT content, which increase was closely related to the decrease of TO-T. Dense and uniform microstructures were observed for all of the doped BCZT ceramics. After the addition of BCTZ, the tetragonal-cubic and orthorhombic-tetragonal phase transitions shifted to lower temperatures compared to those for the pure KNNL-AS. A coexistence of the orthorhombic and tetragonal phases was hence formed in the ceramics with x = 0.02 mol at room temperature, leading to a significant enhancement of the piezoelectric properties. For the composition with x = 0.02 mol, the piezoelectric properties showed optimum values of: d33 = 185 pC/N, kp = 41%, Tc=325˚C, TO-T=-4˚C.
Studies on lead-free piezoelectrics have been attractive as means of meeting environmental requirements. We synthesized lead-free piezoelectric (Bi1/2Na1/2)TiO3-Ba(Cu1/3Nb2/3)O3 (BNT-BCN) ceramics, and their dielectric, piezoelectric, and strain behavior were characterized. As BCN with a tetragonal phase was incorporated into the rhombohedral BNT lattice, the lattice constant increased. A small amount of BCN increased the density and dielectric constant forming the complete solid solution with BNT. However, BCN above 10 mol% was precipitated into a separate phase, and which was detected with XRD. In addition, EDX measurement revealed that Cu in BCN was not distributed homogeneously but was accumulated in a certain area. A lower density with a large amount of BCN was attributed to the nonsinterable property of BCN with large tetragonaliy. The dielectric constant vs the temperature change and the strain vs the electric field indicated that the ferroelectric property of BNT was diminished and paraelectric behavior was enhanced with the BCN addition. BNT-7.5BCN showed a 0.11% unimorph strain with a 9.0 kV/mm electric field with little hysteresis.
The effects of high energy ball-milling (HEBM) on the sintering behavior and piezoelectric properties of 0.1 wt% doped 0.8Pb()-0.2Pb() (PMN-PZT) ceramics were investigated. It was found that HEBM treatment was quite effective to reduce the average particle size down to 300 nm, leading to increased density as well as enhanced piezoelectric properties of a sintered specimen even though prolonged HEBM resulted in unwanted secondary phases that caused a degradation of piezoelectric properties. The dielectric constant (), piezoelectric coupling factor () and piezoelectric constant of 0.1 wt% doped PMN-PZT ceramics prepared via HEBM for 10 h reached 2040, 0.68 and 554 pC/N, respectively.
The effects of doping on the crystal structure, ferroelectric, and piezoelectric properties of (K,Na) (KNN) ceramics have been investigated. was found to be effective in enhancing the densification and grain growth during sintering. X-ray diffraction analysis indicated that Mn ions substituted B-site Nb ions up to 2 mol%, however, further doping induced unwanted secondary phases. In comparison with undoped KNN ceramics, the well developed microstructure and the substitution to B-sites in 2 mol% Mn-doped KNN ceramics resulted in significant improvements in both piezoelectric coupling coefficient and electromechanical quality factor.
For use in ultrasonic actuators, we investigated the structural and piezoelectric properties of (1 - x)Pb(Zr0.515Ti0.485)O3 - xPb(Sb1/2Nb1/2)O3 + 0.5 wt% MnO2 [(1 - x)PZT - xPSN + MnO2] ceramics with a variation of x (x = 0.02, 0.04, 0.06, 0.08). All the ceramics, which were sintered at 1250˚C for 2 h, showed a typical perovskite structure, implying that they were well synthesized. A homogeneous micro structure was also developed for the specimens, and their average grain size was slightly decreased to 1.3μm by increasing x to 0.8. Moreover, a second phase with a pyrochlore structure appeared when x was above 0.06, which resulted in the deterioration of their piezoelectric properties. However, the 0.96PZT-0.04PSN+MnO2 ceramics, which corresponds with a morphotropic phase boundary (MPB) composition in the (1 - x)PZT - xPSN + MnO2 system, exhibited good piezoelectric properties: a piezoelectric constant (d33) of 325 pC/N, an electromechanical coupling factor (kp) of 70.8%, and a mechanical quality factor (Qm) of 1779. The specimens with a relatively high curie temperature (Tc) of 305˚C also showed a significantly high dielectric constant (εr) value of 1109. Therefore, the 0.96PZT - 0.04PSN + MnO2 ceramics are suitable for use in ultrasonic vibrators.
As a candidate for lead-free piezoelectric materials, dense (NKN-5LT) ceramics were developed by conventional sintering process. Sintering temperature was lowered by adding as a sintering aid. The electrical properties of NKN-5LT ceramics were investigated as a function of concentration. At the addition of 1 mol% , electromechanical coupling factor and piezoelectric coefficient of NKN-5LT ceramics were found to reach the highest values of 0.37 and 250 pC/N, respectively.