국내 도로 연장은 2023년 기준 115,878km로 매년 증가하는 추세를 보이고 있다. 이중 준공 30년 이상된 노후도로의 비율은 51.5%에 해당하고 있어 도로 유지관리의 중요성이 대두되는 실정이다. 본 연구에서는 아스팔트 예방적 유지보수공법인 포그씰(Fog Seal)을 실 제 공용중에 있는 도로에 적용하여 공용성 변화를 분석하였다. 공용성능 분석을 위해 차량의 휠패스 부분에서 공법당 6개의 코어를 3 차년간 채취하여 공극률 및 바인더 함량 값을 비교하였다. 분석 방법으로는 포그씰 공법을 시공하지 않은 구간을 대조군으로 선정하 여 추적조사 기간에 따른 변화 추이를 분석하였다. 분석 결과, 공극률은 포그씰 시공 이후 지속적인 감소를 보였다. 바인더 함량의 경 우 공용연수가 증가할수록 바인더 함량 또한 점차 증가하는 것으로 확인되었다. 이는 공용연수가 증가함에 따라 차량의 주행으로 인 해 표면에 도포된 포그씰이 점차 도로 표면 및 균열 속으로 스며들어 내부의 공극이 채워지는 것으로 판단된다.
FRP 복합재료 중 CFRP(탄소 섬유 강화 플라스틱)는 현재 RC 구조물의 내부 및 외부 보강재로서 그리드 형태로 활용되고 있다. 그러나 CFRP 그리드에 대한 성능평가 기준은 매우 미흡하여 FRP 보강근 기준을 사용하고 있다. 따라서 본 연구에서는 그리드 가닥 수와 경계조건과 변수를 고려하여 CFRP 그리드의 인장 성능을 평가하기 위한 실험이 수행되었다. 가닥 수는 1, 2, 3가닥에 대한 인장시험이 수행되었으며, 경계조건의 경우 모르타르, 에폭시, 에폭시 + 모르타르로 변수를 지정하였다. 인장시험을 통하여 최적 가닥 수 및 최적 경계조건으로 개발한 시편을 토대로 고온 노출 시간에 따라 CFRP 그리드의 인장 성능 평가가 수행되었다. 온도는 130°C 로 유지되었으며, 5개의 시편을 각각 70분(Case 2), 100분(Case 3), 120분(Case 4), 150분(Case 5) 고온에 노출하여 비 고온 노출 시편 과 비교하였다. 실험 결과, 비 고온 노출 시편과 비교하여 Case 5에서는 인장강도와 탄성계수가 각각 최대 51.32% 및 44.4% 감소한 것으로 나타났다.
코드린나방은 사과, 배, 복숭아 등 과실류를 비롯한 다양한 작물에 피해를 주는 해충으로써, 대한민국 식물방 역법상 금지해충에 속해있다. 검역실적으로는 2016년 6월에 1건, 2018년 6월에 2건이 모두 인천공항으로 수입된 우즈베키스탄산 양벚에서 검출되었다. 코드린나방은 국내 침입이 매우 우려되는 해충 중의 한 종으로써 한국, 일본, 대만을 제외한 거의 모든 온대지역에 분포하고 있다. 따라서 우리나라는 본 해충에 대한 정밀하고 지속적인 표적 예찰이 필수 불가결이다. 효과적인 예찰을 위한 페로몬 트랩 개발을 위해 다음 사항들을 고려할 수 있다. 우선 페로몬 성분비에 따른 유인력의 차이를 검정해 효과적인 성분비를 찾는 것이 중요한데, 그 방법으로는 GC-MS/MS 분석법을 통해 루어의 페로몬 구성비율을 분석한다. 이후 적합한 실험환경을 설정하고 페로몬 혼합 물을 적용한 여과지를 케이지에 달아 일정 시간 동안 여과지에 접촉한 횟수를 기록 후 통계분석을 통한 유의성 검정을 실시한다. 이어서 페로몬을 루어에 주입, 흡착시킨 후 페로몬 트랩을 현장에 설치해 포획된 수컷 성충 수를 조사해 효과적인 약량 및 루어형태 등을 선별하게 된다. 이를 통해 효과적인 코드린나방 트랩 개발을 위한 기초연구를 수행하고자 하며, 우리나라의 농업과 자연환경 보호에 기여하고자 한다.
본 논문에서는 역학적 변수들을 측정하는 방안으로 디지털 이미지 프로세싱과 강형식 기반의 MLS 차분법을 융합한 DIP-MLS 시 험법을 소개하고 추적점의 위치와 이미지 해상도에 대한 영향을 분석하였다. 이 방법은 디지털 이미지 프로세싱을 통해 시료에 부착 된 표적의 변위 값을 측정하고 이를 절점만 사용하는 MLS 차분법 모델의 절점 변위로 분배하여 대상 물체의 응력, 변형률과 같은 역 학적 변수를 계산한다. 디지털 이미지 프로세싱을 통해서 표적의 무게중심 점의 변위를 측정하기 위한 효과적인 방안을 제시하였다. 이미지 기반의 표적 변위를 이용한 MLS 차분법의 역학적 변수의 계산은 정확한 시험체의 변위 이력을 취득하고 정형성이 부족한 추 적 점들의 변위를 이용해 mesh나 grid의 제약 없이 임의의 위치에서 역학적 변수를 쉽게 계산할 수 있다. 개발된 시험법은 고무 보의 3 점 휨 실험을 대상으로 센서의 계측 결과와 DIP-MLS 시험법의 결과를 비교하고, 추가적으로 MLS 차분법만으로 시뮬레이션한 수치 해석 결과와도 비교하여 검증하였다. 이를 통해 개발된 기법이 대변형 이전까지의 단계에서 실제 시험을 정확히 모사하고 수치해석 결과와도 잘 일치하는 것을 확인하였다. 또한, 모서리 점을 추가한 46개의 추적점을 DIP-MLS 시험법에 적용하고 표적의 내부 점만을 이용한 경우와 비교하여 경계 점의 영향을 분석하였고 이 시험법을 위한 최적의 이미지 해상도를 제시하였다. 이를 통해 직접 실험이 나 기존의 요소망 기반 시뮬레이션의 부족한 점을 효율적으로 보완하는 한편, 실험-시뮬레이션 과정의 디지털화가 상당한 수준까지 가능하다는 것을 보여주었다.
In the case of the Pohang earthquake, which had a magnitude of 5.4 in 2017, geotechnical damages such as liquefaction and ground settlement occurred. The need for countermeasures has emerged, and experimental research in the Pohang area has continued. This study collected undisturbed samples from damaged fine-grained soil areas where ground settlement occurred in Pohang. Cyclic tri-axial tests for identifying the dynamic characteristics of soils were performed on the undisturbed samples, and the results were analyzed to determine the cause of ground settlement. As a result of the study, it was determined that in the case of fine-grained soils, ground settlement occurred because the seismic load as an external force was relatively more significant than the shear resistance of the very soft fine-grained soils, rather than due to an increase in excess pore water pressure.
PURPOSES : The increase in particulate matter due to increased air pollutant emissions has become a significant social issue. According to the Ministry of Environment, air pollutants emitted from large-scale businesses in 2022 increased by 12.2% compared to the previous year, indicating that air pollution is accelerating owing to excessive industrialization. In this study, TiO2, which is used to reduce airborne particulate, was used. The TiO2 coating fixation and dynamic pressure coating-type TiO2 fixation methods were used to solve the material peeling phenomenon caused by gravity, which is a limitation when the TiO2 penetration method is applied to a vertical concrete structure along the road. The long-term durability and performance were analyzed through environmental resistance and NOx removal efficiency evaluation experiments. These analyses were then assessed by comparing the NOx removal efficiency with the dynamic pressure permeationtype TiO2 fixation method used in previous studies. METHODS : To evaluate the long-term durability and performance of the TiO2 coating fixation method and dynamic pressure coating TiO2 fixation method for vertical concrete structures, specimens were manufactured based on roadside vertical concrete structures. Environmental resistance tests such as the surface peeling resistance test (ASTM C 672) and freeze-thaw resistance test (KS F 2456) were conducted to evaluate the long-term durability. To evaluate the long-term performance, the NOx removal efficiency of TiO2 concrete owing to road surface deterioration during the environmental resistance test was evaluated using the NOx removal efficiency evaluation equipment based on the ISO 22197-1 standard. This evaluation was compared and analyzed using the dynamic pressure infiltration TiO2 fixation method. RESULTS : The long-term durability of the TiO2 coating fixation and dynamic pressure coating TiO2 fixation methods were evaluated using environmental resistance tests. During the surface peeling resistance test, the TiO2 material degraded and partially detached from the concrete. However, the NOx removal efficiency was ensured by the non-deteriorated and fixed TiO2 material. The long-term performance was confirmed through a freeze-thaw resistance test to evaluate the NOx removal efficiency after 300 cycles of surface deterioration. The results showed that when the TiO2 coating fixation and dynamic pressure infiltration TiO2 fixation methods were applied to vertical concrete structures, the durability of the structure was not compromised. In comparison to the dynamic pressure infiltration TiO2 fixation method, the NOx removal efficiency observed during the surface peeling resistance test was lower, while the freeze-thaw test exhibited notably higher removal efficiency. CONCLUSIONS : To solve the material peeling phenomenon caused by gravity, the long-term durability and performance were evaluated by applying the TiO2 coating fixation and dynamic pressurized coating TiO2 fixation methods to vertical concrete specimens. Long-term durability was confirmed through environmental resistance tests, and long-term utility was secured by measuring the NOx removal efficiency according to surface degradation. These findings show that implementing the TiO2 coating fixation method and dynamic pressure coating TiO2 fixation methods on-site effectively reduce NOx.
In order to respond to environmental pollution, developed countries, including Korea, have begun to conduct research to utilize hydrogen energy. For mass transfer of hydrogen energy, storage as liquid hydrogen is advantageous, and in this case, the volume can be reduced to 1/800. As such, the transportation technology of liquefied hydrogen for ships is expected to be needed in the near future, but there is no commercialized method yet. This study is a study on the technology to test the performance of the components constituting the membrane type storage container in a cryogenic environment as a preparation for the above. It is a study to find a way to respond by analyzing in advance the problems that may occur during the shear test of adhesives. Through this study, the limitations of ISO4587 were analyzed, and in order to cope with this, the specimen was supplemented so that fracture occurred in the adhesive, not the adhesive gripper, by using stainless steel, a low-temperature steel, to reinforce the thickness. Based on this, shear evaluation was performed under conditions lowered to minus 243℃, and it was confirmed that the breaking strength was higher at cryogenic temperatures.
PURPOSES : Advancements in science and technology caused by industrialization have led to an increase in particulate matter emissions and, consequently, severity of air pollution. Nitrogen oxide (NOx), which accounts for 58% of road transport pollutants, adversely affects both human health and the environment. A test-bed was constructed to determine NOx removal efficiency at the roadside. TiO2, a material used to reduce particulate matter, was used to remove NOx. It was applied to a vertical concrete structure using the dynamic pressurized penetration TiO2 fixation method, which can be easily applied to vertical concrete structures. This study was conducted to evaluate the NOx removal efficiency of the dynamic pressurized-penetration TiO2 fixation method in a test-bed under real roadside conditions.
METHODS : A test-bed was constructed in order to determine the NOx removal efficiency using the dynamic pressurized penetration TiO2 fixation method on the roadside. The dynamic pressurized-penetration TiO2 fixation method was applied by installing a vertical concrete structure. NOx was injected into the test-bed using an exhaust gas generator. By installing a shading screen, the photocatalytic reaction of TiO2 was suppressed to a maximum concentration of 1000 ppb along the roadside. The removal efficiency was evaluated by measuring NOx concentrations. In addition, illuminance was measured using an illuminance meter.
RESULTS : From the results of the analysis of the NOx removal efficiency in the test-bed which the dynamic pressurized type TiO2 fixation method was applied to, an average removal efficiency ranging from 18% to 40% was achieved, depending on the illuminance. Similarly, according to the results of the evaluation of the NO removal efficiency, an average of removal efficiency ranging from 20% to 62% was achieved. Thus, the NOx removal efficiency increased when the illuminance was high.
CONCLUSIONS : From the results of the experiment conducted, the efficiency of NOx removal per unit volume was obtained according to the illuminance of TiO2 concrete along an actual road. Field applicability of the dynamic pressurized-penetration-type TiO2 fixation method to vertical concrete structures along roads was confirmed.
This study sought to conduct a fundamental investigation in order to test and evaluate the thermal performance of an aluminum stick curtain wall system. In terms of the thermal performance index, the infiltration rate of air tightness, thermal transmittance of the heat insulation property and temperature difference ratio of condensation resistance were experimentally measured. The research process can be divided into three parts. First of all, a database for the test report of the curtain wall was compiled and existing design criteria with respect to the evaluation method and standard of transparent building components such as curtain wall, window and door were analyzed to produce the specimens. Secondly, four different types of curtain wall specimens were created through investigating the curtain wall database. Thirdly, standard tests of thermal performance were carried out for airtightness, thermal performance and condensation resistance. As a result, the curtain wall specimens with low-e triple glazing covered by an aluminum capture system showed high thermal performance compared to other curtain wall specimens including low-e triple glazing with a 4-sided structural sealant glazing system. Air tightness of all types of curtain wall specimens satisfied level 1 standard for air tightness. It was found that a curtain wall which consists of a one track frame has difficulties meeting the residential standard of thermal performance with regard to thermal transmittance and condensation resistance.
Quality standards of activated carbon for gas-phase applications have been deleted from the Korean national standard list since 2007, and the iodine adsorption test is the only measure currently used for quality assurance. This study was performed to propose a suitable test method and a quality standard for gas-phase activated carbon. The "1/2 saturated vapor adsorption" test has been developed as a simple and convenient method to determine the adsorption capacity of activated carbon. In this study, the developed test method was evaluated using model VOCs including toluene, methyl ethyl ketone (MEK), and ethyl acetate (EA). A virgin activated carbon revealed adsorption capacities of 344mg/g, 322mg/g, and 328mg/g for toluene, EA, and MEK, respectively, and the adsorption capacity for a mixture of the three VOCs was 334 mg/g. When a regenerated activated carbon was applied, the adsorption capacities dramatically decreased to 62 mg/g, 52 mg/g, and 61 mg/ g for toluene, EA, and MEK, respectively. In addition, the 1/2 solvent vapor adsorption tests using 13 different specimens of activated carbon showed that their capacities were closely related to the iodine adsorption numbers, and this study suggested the adsorption capacity of 300 mg/g as a new quality standard. The novel test method and its standard may help to guarantee the quality of gas-phase activated carbon used for VOCs abatement processes.
Failure to comply with the performance test requirements for the centrifugal pumps at power plants often results in performance dissatisfaction as a result of field tests. This study proposed a method of reducing the uncertainty of the field test results by evaluating the systematic error in the measurement system caused by failure to follow the test requirements using the computational fluid dynamics(CFD) technique. As a result of the evaluation of the systematic error and reflecting it in the performance test data, it was confirmed that the error occurred at a constant rate with respect to the flowrate and that the pump, which showed a difference in performance actually had the same performance.
PURPOSES : The exposed aggregate number (EAN) and mean texture depth (MTD) of exposed aggregate concrete pavement (EACP) influence the functional performance of EACP in terms of pavement noise and skid resistance. The selection of the exposure time of EACP is important because the designed EAN and MTD of EACP can be achieved when the exposure process is performed at an appropriate time. On the one hand, too early exposure may cause protrusions and unwanted removal of aggregates and mortar. On the other hand, late exposure may cause difficulty in exposure of the mortar. In this study, a method to determine the optimum exposure time for EACP is suggested using a non-destructive method.
METHODS : A set of laboratory tests was performed to investigate the variation in EAN and MTD of EACP according to the elastic modulus obtained by non-destructive equipment. From the results of this investigation, the optimum exposure time using the non-destructive method and the exposure time window (ETW) method was suggested. In addition, the usefulness of ETW suggested by laboratory tests was verified from a field application.
RESULTS : From the laboratory tests, it was found that the targets of the surface condition of EACP (EAN: 59 per 25 cm2, MTD: 1.39 mm) can be achieved when the concrete elastic modulus is higher than 20GPa. The proposed guideline using the non-destructive method was applied for the field construction of EACP and achieved similar results.
CONCLUSIONS : It was found that the proposed guideline for determining the exposure time window based on non-destructive testing is useful.
This study was carried out in order to help establish a continuous efficiency test method to evaluate the performance of chemical odorants. We designed a continuous efficiency test device, and conducted several experiments during 240 mins with D.W. and two chemical deodorants for several specified substances, and a complex odor compound. Based on the results, it was confirmed that the deocorant test only for ammonia and amine could yield no useful outcome because the solubility of the two compounds was very high. Henceforth, simultaneous tests for sulfides, mercaptans, aldehydes, and so on, shoud be conducted in order to ascertain the accurate deodorant performance results. It is also clear that the concentration of target compounds and reaction time are very important for the purposes of accurate deodorant tests. In addition, information about the absorption efficiency with regard to complex odor compound such as DMS+DMDS may be important and the results based on air dilution olfactory method should be provided. It is believed that this study can make a contribution to formulating the correct standards regarding the testing of deodorants and the application of such tests.
Game development costs a lot of money. Thus, in terms of cost-saving, game companies produce prototypes and undergo several tests and modifications during the development period. In this paper, we proposed a brainwave signal analysis system and linked it with the game to measure the player's emotion through brainwave analysis experiment and tried to solve these problems. The brainwave signal analysis system proposed in this paper is capable of various applications according to various development situations, such as the progress of the game, events, etc. in obtaining simple figures over time by linking games, and collecting the tester's responses according to development intentions, so there will have to be continuous additional research.