검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 40

        1.
        2024.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The aerospace and power generation industries have an increasing demand for high-temperature, highstrength materials. However, conventional materials typically lack sufficient fracture toughness and oxidation resistance at high temperatures. This study aims to enhance the high-temperature properties of Nb-Si-Ti alloys through ball milling. To analyze the effects of milling time, the progression of alloying is evaluated on the basis of XRD patterns and the microstructure of alloy powders. Spark plasma sintering (SPS) is employed to produce compacts, with thermodynamic modeling assisting in predicting phase fractions and sintering temperature ranges. The changes in the microstructure and variation in the mechanical properties due to the adjustment of the sintering temperature provide insights into the influence of Nb solid solution, Nb5Si3, and crystallite size within the compacts. By investigating the changes in the mechanical properties through strengthening mechanisms, such as precipitation strengthening, solid solution strengthening, and crystallite refinement, this study aims to verify the applicability of Nb-Si-Ti alloys in advanced material systems.
        4,000원
        2.
        2023.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Titanium constitutes approximately 60% of the weight of steel and exhibits strength comparable to steel's but with a higher strength-to-weight ratio. Titanium alloys possess excellent corrosion resistance due to a thin oxide layer at room temperature; however, their reactivity increases above 600°C, leading to oxidation and nitridation. Welding titanium alloys presents challenges such as porosity issues. Laser welding minimizes the heat-affected zone (HAZ) by emitting high output in a localized area for a short duration. This process forms a narrow and deep HAZ, reducing the deterioration of mechanical properties and decreasing the contact area with oxygen. In this study, fiber laser welding was conducted on 8.0mm thick Ti-6Al-4V alloy using the Bead On Plate (BOP) technique. A total of 25 welding conditions were experimented with to observe bead shapes. The results demonstrated successful penetration within the 0.792mm to 8.000mm range. It was concluded that this experimental approach can predict diverse welding conditions for Ti-6Al-4V alloys of various thicknesses.
        4,000원
        3.
        2022.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Beta-titanium alloys are used in many industries due to their increased elongation resulting from their BCC structure and low modulus of elasticity. However, there are many limitations to their use due to the high cost of betastabilizer elements. In this study, biocompatible Ti-Mo-Fe beta titanium alloys are designed by replacing costly betastabilizer elements (e.g., Nb, Zr, or Ta) with inexpensive Mo and Fe elements. Additionally, Ti-Mo-Fe alloys designed with different Fe contents are fabricated using powder metallurgy. Fe is a strong, biocompatible beta-stabilizer element and a low-cost alloying element. The mechanical properties of the Ti-Mo-Fe metastable beta titanium alloys are analyzed in relation to the microstructural changes. When the Fe content increases, the tensile strength and elongation decrease due to brittle fracture despite a decreasing pore fraction. It is confirmed that the hardness and tensile strength of Ti-5Mo-2Fe P/M improve to more than 360 Hv and 900 MPa, respectively.
        4,000원
        4.
        2021.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Ti-based alloys are widely used in biomaterials owing to their excellent biocompatibility. In this study, Ti- Mn-Cu alloys are prepared by high-energy ball milling, magnetic pulsed compaction, and pressureless sintering. The microstructure and microhardness of the Ti-Mn-Cu alloys with variation of the Cu addition and compaction pressure are analyzed. The correlation between the composition, compaction pressure, and density is investigated by measuring the green density and sintered density for samples with different compositions, subjected to various compaction pressures. For all compositions, it is confirmed that the green density increases proportionally as the compaction pressure increases, but the sintered density decreases owing to gas formation from the pyrolysis of TiH2 powders and reduction of oxides on the surface of the starting powders during the sintering process. In addition, an increase in the amount of Cu addition changes the volume fractions of the α-Ti and β-Ti phases, and the microstructure of the alloys with different compositions also changes. It is demonstrated that these changes in the phase volume fraction and microstructure are closely related to the mechanical properties of the Ti-Mn-Cu alloys.
        4,000원
        5.
        2018.06 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Binary Ti-Al alloys below 51.0 mass%Al content exhibit a breakaway, transferring from parabolic to linear rate law. The second Al2O3 layer might have some protectiveness before breakaway. Ti-63.1 mass%Al oxidized at 1173 K under parabolic law. Breakaway oxidation is observed in every alloy, except for Ti-63.1 mass%Al. After breakaway, oxidation rates of the binary TiAl alloys below 34.5 mass%Al obey almost linear kinetics. The corrosion rate of Ti-63.1 mass%Al appears to be almost parabolic. As content greater than 63.0 mass% is found to be necessary to form a protective alumina film. Addition of Mo improves the oxidation resistance dramatically. No breakaway is observed at 1123 K, and breakaway is delayed by Mo addition at 1173 K. At 1123 K, no breakaway, but a parabolic increase in mass gain, are observed in the Mo-added TiAl alloys. The binary Ti-34.5 mass%Al exhibits a transfer from parabolic to linear kinetics. At 1173 K, the binary alloys show vary fast linear oxidation and even the Mo-added alloys exhibit breakaway oxidation. The 2.0 mass%Mo-added TiAl exhibits a slope between linear and parabolic. At values of 4.0 and 6.0 mass% added TiAl alloys, slightly larger rates are observed than those for the parabolic rate law, even after breakaway. On those alloys, the second Al2O3 layer appears to be persistently continuous. Oxidation resistance is considerably degraded by the addition of Mn. Mn appears to have the effect of breaking the continuity of the second Al2O3 layer.
        3,000원
        6.
        2017.11 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Si3N4 is a ceramic material attracting attention in many fields because of its excellent abrasion resistance. In addition, Ti and TiAl alloys are metals used in a variety of high temperature environments, and have attracted much attention because of their high strength and high melting points. Therefore, study of the interface reaction between Si3N4 / Ti and Si3N4 / TiAl can be a useful practice to identify phase selection and diffusion control. In this study, Si3N4 / Ti5Si3 + TiN / TiN / Ti diffusing pairs were formed in the Si3N4 / Ti interfacial reaction and Si3N4 / TiN(Al) / Ti3Al / TiAl diffusion pathway was identified in the Si3N4 / TiAl interfacial reaction. The diffusion layers of the interface reactions were identified and, to investigate the kinetics of the diffusion layer, the integrated diffusion coefficients were estimated.
        4,000원
        7.
        2017.10 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The microstructural evolution and modulation of mechanical properties were investigated for a Ti65Fe35 hypereutectic alloy by addition of Bi53In47 eutectic alloys. The microstructure of these alloys changed with the additional Bi- In elements from a typical dendrite-eutectic composite to a bimodal eutectic structure with primary dendrite phases. In particular, the primary dendrite phase changed from a TiFe intermetallic compound into a β-Ti solid solution despite their higher Fe content. Compressive tests at room temperature demonstrated that the yield strength slightly decreased but the plasticity evidently increased with an increasing Bi-In content, which led to the formation of a bimodal eutectic structure (β-Ti/TiFe + β- Ti/BiIn containing phase). Furthermore, the (Ti65Fe35)95(Bi53In47)5 alloy exhibited optimized mechanical properties with high strength (1319MPa) and reasonable plasticity (14.2%). The results of this study indicate that the transition of the eutectic structure, the type of primary phases and the supersaturation in the β-Ti phase are crucial factors for controlling the mechanical properties of the ultrafine dendrite-eutectic composites.
        4,000원
        8.
        2017.01 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Binary Ti-Al alloys containing 50 to 60 atomic percent aluminum are rapidly solidified by hammer anvil method under an argon atmosphere. Constituent phases in each alloy are identified by X-ray diffractometry and microstructures of the alloys are investigated using a transmission electron microscope. In alloys with aluminum content between 50 and 54 percent, a second phase exists besides TiAl(γ); this second phase is identified as Ti3Al(α2). The α2 phase is observed in two types of morphology. One is as fine lamellar alternating with γ and the other is as a particle. It is concluded that the existence of a metastable phase with the morphologies stated above should arise from a higher quenching rate attained by the hammer anvil method as compared to the conventional roll or splat-quench method. Implications of the above observation are discussed with respect to the phase relations in the Ti-Al binary system; these implications are still controversial in many respects.
        3,000원
        9.
        2016.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study was purposed to develope a titanium alloy with low elastic modulus to be used as dental implant. The new titanium alloy was prepared as titanium alloy by adding Tantalum(Ta), Zirconium(Zr), Molybdenum(Mo) into the Ti-X-Y-Z system alloys. In designing the new titanium alloys, two physical variables bond order (Bo) and d-electron orbit energy level (Md) were varied. Mean bond order (  ) was around 2.818∼2.8784eV, and Mean d-electron orbit energy level ( ) was 2.4541~2.4747eV. In the cases of titanium alloys of T-3M and T-3Z, the XRD analysis showed β phase. On the other hand, the phase of α+ β were observed in the T-6Z and T-8Z alloys. Exhibited the highest hardness value to result in T-3Z 309.7Hv alloy Vickers hardness with respect to titanium alloy. In the resulting T-3Z alloy of measuring the elastic modulus value for a titanium alloy exhibited the smallest modulus of elasticity value to 89.81GPa. TEM analysis identified additional feature for T-3Z alloy was detected in addition to the ß-phase.
        4,000원
        10.
        2014.04 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Ti and Ti alloys have been extensively used in the medical and dental fields because of their good corrosion resistance, high strength to density ratio and especially, their low elastic modulus compared to other metallic materials. Recent trends in biomaterials research have focused on development of metallic alloys with elastic modulus similar to natural bone, however, many candidate materials also contain toxic elements that would be biologically harmful. In this study, new Ti based alloys which do not contain the toxic metallic components were developed using a theoretical method (DV-Xα). In addition, alloys were developed with improved mechanical properties and corrosion resistance. Ternary Ti-Ag-Zr alloys consisting of biocompatible alloying elements were produced to investigate the alloying effect on microstructure, corrosion resistance, mechanical properties and biocompatibility. The effects of various contents of Zr on the mechanical properties and biocompatibility were compared. The alloys exhibited higher strength and corrosion resistance than pure Ti, had antibacterial properties, and were not observed to be cytotoxic. Of the designed alloys' mechanical properties and biocompatibility, the Ti-3Ag-0.5Zr alloy had the best results.
        4,000원
        12.
        2011.11 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The effect of oxygen on the shape memory characteristics in Ti-18Nb-6Zr-XO (X = 0-1.5 at%) biomedical alloys was investigated by tensile tests. The alloys were fabricated by an arc melting method at Ar atmosphere. The ingots were cold-rolled to 0.45 mm with a reduction up to 95% in thickness. After severe cold-rolling, the plate was solution-treated at 1173 K for 1.8 ks. The fracture stress of the solution-treated specimens increased from 450 Mpa to 880 MPa with an increasing oxygen content up to 1.5%. The fracture stress increased by 287MPa with 1 at% increase of oxygen content. The critical stress for slip increased from 430 MPa to 695 MPa with an increasing oxygen content up to 1.5 at%. The maximum recovery strain of 4.1% was obtained in the Ti-18Nb-6Zr-0.5O (at%) alloy. The martensitic transformation temperature decreased by 140 K with a 1.0 at% increase in O content, which is lower than that of Ti-22Nb-(0-2.0)O (at%) by 20 K. This may have been caused by the effect of the addition of Zr. This study confirmed that addition of oxygen to the Ti-Nb-Zr alloy increases the critical stress for slip due to solid solution hardening without being detrimental to the maximum recovery strain.
        4,000원
        13.
        2011.07 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        In this paper, high temperature oxidation behavior of newly developed alloys, Ti-6Al-4Fe and Ti-6Al-1Fe, is examined. To understand the effect of Fe on the air oxidation behavior of the Ti-Al-Fe alloy system, thermal oxidation tests are carried out at 700˚C and 800˚C for 96 hours. Ti-6Al-4V alloy is also prepared and tested under the same conditions for comparison with the developed alloys. The oxidation resistance of the Ti-Al-Fe alloy system is superior to that of Ti-6Al-4V alloy. Ti-6Al-4V shows the worst oxidation resistance for all test conditions. This is not a result of the addition of Fe, but rather it is due to the elimination of V, which has deleterious effects on high temperature oxidation. The oxidation of the Ti-Al-Fe alloy system follows the parabolic rate law. At 700˚C, Fe addition does not have a noticeable influence on the amount of weight gain of all specimens. However, at 800˚C, Ti-6Al-4Fe alloy shows remarkable degradation compared to Ti-6Al-1Fe and Ti-6Al. It is discovered that the formation of Al2O3, a diffusion resistance layer, is remarkably hindered by a relative decrease of the α volume fraction. This is because Fe addition increases the volume fraction of β phase within the Ti-6Al-xFe alloy system. Activities of Al, Ti, and Fe with respect to the formation of oxide layers are calculated and analyzed to explore the oxidation mechanism.
        4,000원
        15.
        2006.04 구독 인증기관·개인회원 무료
        Nb-Ti alloys were hydrogenated to prepare fine and contamination-free powders. Cracks were introduced in the alloys when they were annealed at 1473 K and cooled in a hydrogen atmosphere. The fragments produced by hydrogen-induced cracking are brittle and the friability enhanced with the Ti content of the alloy, which is beneficial for further refinement of particle size. We also demonstrate that Nb-Ti powders with the average particle size less than 1 m can be produced by ball milling at a temperature lower than 203 K. Furthermore, hydrogen-free powders can then be obtained by annealing above the temperature corresponding to hydrogen desorption from Nb solid solution.
        16.
        2006.04 구독 인증기관·개인회원 무료
        This paper presents the influence of the compositions of sintered Ti-Ni alloys on their thermo-mechanical properties. The Ti-Ni alloys having various compositions from 50at%Ni to 51at%Ni were sintered using elemental Ti and Ni powders by a pulse-current pressure sintering equipment. The deformation resistance in stress-strain curves increased with an increase in Ni content. In the case of Ti-50at%Ni, tensile strength and elongation were more than 500 MPa and 7%, respectively. The increase in Ni content also makes the transformation temperatures lower. The deformation resistance at a test temperature change from 293K and 353K in isothermal tensile test increased with elevating test temperature.
        1 2