검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 13

        1.
        2020.01 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Small fishing vessels are manufactured using FRP. Various studies have been conducted to increase the strength of the composite material by mixing alumina powder with resin. Tensile tests and flexural strength tests are conducted to examine the effect of alumina powder on the strength of GFRP. In the current study, resin/alumina composites at different alumina contents (i.e., 0, 1, 5, and 10 vol%) have been prepared. The physical and mechanical properties of the prepared composites have been investigated. From the results, the tensile strength of the specimen with alumina powder mixed in at 10% shows the highest value of 155.66 MPa. The tensile strength of the specimen mixed with alumina powder increases with the amount of alumina powder impregnated. In the flexural strength test, the flexural strength of neat resin without alumina powder has a highest value of 257.7 MPa. The flexural modulus of ALMix-5 has a highest value of 12.06 GPa. Barcol hardness of ALMix- 10 has a highest value of 51. We show that alumina powder leads to decreasing cracks on the surface and decreasing length area of delamination.
        4,000원
        2.
        2015.05 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        High temperature plasma coating technology has been applied to recover damaged aluminum dies from wear by spraying pure aluminum and alumina powder. However, the coated mixed powder layer composed of aluminum and alumina often undergoes a detachment from the substrate, making the coated substrate die unable to maintain its expected life span. In this study, in order to increase the bonding strength between the substrate and the coating layer, a pure aluminum layer was applied as an intermediate bond layer. In order to prepare the specimen with variable bond coating conditions, the bond coat layers with a various gun speed from 10 cm/sec to 30 cm/sec were prepared with coating cycle variations ranging from three to nine cycles. The specimen with a bond coat layer coated with a gun speed of 20 cm/sec and three coating cycles exhibited ~13MPa of adhesion strength, while the specimen without a bond coat layer showed ~6 MPa of adhesion strength. The adhesion strength with a variation of bond coat layer thickness is discussed in terms of coating parameters.
        4,000원
        3.
        2014.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The powder injection molding process having advantages in manufacturing three-dimensional precision parts essentially requires a debinding process before sintering to remove the binders used for preparing feedstock. In this study, powder injection molding of translucent alumina was performed, and carbon dioxide (CO2) is used as a supercritical fluid that makes it possible to remove a large amount of binder, which is paraffin wax. The relationship between the optical property of translucent alumina and the debinding condition (temperature and pressure) of supercritical CO2 was investigated. As temperature and pressure increased, extraction rate of the binder showed rising tendency and average grain size after sintering process was relatively fine. On the other hand, optical transmittance was reduced. As a result, the debinding condition at 50˚C and 20 MPa that represents the lowest extraction rate, 8.19x10-3m2/sec, corresponds to the largest grain size of 14.7μm and the highest optical transmittance of 45.2%.
        4,000원
        4.
        2014.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Translucent alumina is a potential candidate for high temperature application as a replacement of the glassor polymer. Recently, due to the increasing demand of high power light emitting diode (LED), there is a growing inter-est in the translucent alumina. Since the translucent property is very sensitive to the internal defect, such as voids insideor abnormal grain growth of sintered alumina, it is important to fabricate the defect-free product through the fabricationprocess. Powder injection molding (PIM) has been commonly applied for the fabrication of complex shaped products.Among the many parameters of PIM, the flowability of powder/binder mixture becomes more significant especially forthe shape of the cavity with thin thickness. Two different positions of the gate were applied during PIM using the disctype of die. The binder was removed by solvent extraction method and the brown compact was sintered at 1750oC for3 hours in a vacuum. The flowability was also simulated using moldflow (MPI 6.0) with two different types of gate.The effect of the flowability of powder/binder mixture on the microstructure of the sintered specimen was studied withthe analysis of the simulation result.
        4,000원
        5.
        2006.09 구독 인증기관·개인회원 무료
        Alumina microcomponents have distinguishing advantages over Si counterpart. However, the shrinkage of alumina, as high as 20%, makes it difficult to produce precision components meeting a high tolerance. A new fabrication process presented to greatly reduce the shrinkage by producing alumina microcomponents from ultrafine Al powder. The process consists of forming Al powder components through sintering and turning the Al powder component into alumina. In this way, the shrinkage occurring in sintering the Al powder component will be compensated by the expansion appearing when the Al powder component turns into alumina. The process has proven successful.
        6.
        2006.04 구독 인증기관·개인회원 무료
        In this experimental work, the development of a multicomponent binder system based on high density polyethylene (HDPE) and paraffin wax for Powder Injection Molding of Alumina parts was carried out. The optimum composition of the injection mixture was established through mixing torque measurements and a rheological study. The maximum powder loading was 58 vol%. The miscibility of organic components and the optimum injection temperature was evaluated by thermal characterization of binder and feedstock. The thermal debinding cycle was developed on the basis of thermogravimetrical analysis of the binder. After sintering the densities achieved were closed to 98% of the theoretical one.
        7.
        2005.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The with various phases were prepared by simple ex-situ hydrolysis and spark plasma sintering (SPS) process of Al powder. The nano bayerite phase was derived by hydrolysis of commercial powder of Al with micrometer size, whereas the bohemite (AlO(OH)) phase was obtained by hydrolysis of nano Al powder synthesized by pulsed wire evaporation (PWE) method. Compaction as well as dehydration of both nano bayerite and bohemite was carried out simultaneously by SPS method, which is used to fabricate dense powder compacts with a rapid heating rate of per min. under the pressure of 50MPa. After compaction treatment in the temperature ranges from , the bayerite and bohemite phases change into various alumina phases depending on the compaction temperatures. The bayerite shows phase transition of sequences. On the other hand, the bohemite experiences the phase transition from AlO(OH) to It shows AlO(OH) sequences. The compacted at shows a high surface area .
        4,000원
        8.
        2005.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Nanoscale Al powder with thin layer of alumina was produced by Wire Electric Explosion (WEE) process. Spark-Plasma Sintering (SPS) was performed for the produced powder to confirm the effectiveness of SPS like so-called 'surface-cleaning effect' and so on. Crystallite size and alumina content of produced powder varied with the ratio of input energy to sublimation energy of Al wire (): Increase in () resulted in the decrease of crystallite size and the increase of alumina content. Shrinkage curve during SPS process showed that the oxide surface layer could not be destroyed near the melting point of Al. It implied that there was not enough or no spark-plasma effect during SPS for Al/Alumina powder.
        4,000원
        11.
        1998.08 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        저용융점을 가진 새로운 무기접착제인 단사정 HBO2가 알루미나 분말의 선택적 레이저 소결을 하기 위한 접착제로서 개발되었다. 120˚C로 유지된 진공오븐 안에서 Boron Oxide 분말을 탄수시키면 단사정 HBO2가 만들어진다. 이것을 이용하여 만들어진 green body는 현재까지 알루미나 분말의 선택적 레이저 소결을 위하여 개발된 다른 무기 접착제들인 알루미늄(AI)과 Ammonium Phosphate(NH4H2PO4)을 이용하여 제조된 것에 비교하여 훨씬 높은 굽힘 강도를 가지고 있고 또 정밀도가 우수하였다. Green body를 열처리하여서 얻은 세라믹 시편도 똑같은 결과를 보여주었다. 이 이유는 단사정 HBO2가 낮은 점도를 보여주고 알루미나 분말에 대하여 좋은 젖음성을 가지고 있기 때문에 가능한 것으로 사료되어진다. 접착제로서 Boron Oxide의 양, 레이저 에너지밀도 등이 SLS에 의하여 제조되어진 복합재료의 굽힘강도에 미치는 영향이 조사되었다.
        4,000원
        12.
        1998.07 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        단사정 HBO2 분막을 무기접착제로 이용하여 선택적 레이저 소결 기술을 적용시켜 알루미나-글래스 복합재료를 제조하였다. 만들어진 green SLS 시험편을 여러 온도에서 열처리하여 글래스-세라믹 복합재료를 얻었다. 글래스의 양이 많을수록 복합재료는 높은 밀도와 높은 굽힘강도를 보여주었다. 열처리 온도 900˚C에서 복합재료는 최대 밀도와 최대 강도를 나타낸다. 이것은 글래스의 낮은 점도로 인한 좋은 유동성 때문에 글래스의 재분배가 이루어졌기에 가능하다고 생각되어진다. 그리고 기공이 많은 열처리한 SLS 시험편에 콜로이드 실리카를 주입시켜 치밀화시켰다.
        4,000원
        13.
        1996.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        저용융점을 가진 새로운 무기 접착제인 단사정 HBO2가 알루미나 분말의 선택적 레이저 소결을 하기 위한 접착제로서 개발되었다. 이것을 이용하여 만들어진 green body는 현재까지 알루미나 분말의 선택적 레이저 소결을 위하여 개발된 다른 무기 접착제들인 알루미늄(Ai)과 Ammonium Phosphate(NH4H2PO4)을 이용하여 제조된 것에 비교하여 훨씬 높은 굽힘 강도를 가지고 있고 또 정밀도가 우수하였다. Green Body는 후속의 열처리를 받음으로써 저밀도 단상 세라믹 AI18B4O33과 다상 세라믹 복합재료 AI2O3-AI4B2O9으로 된다. AI18B4O33과 AI4B2O9의 결정립의 모양은 휘스커 구조와 유사하였다. 재료인자와 가공변수가 이 세라믹의 기계적 및 물리적 성질에 미치는 영향이 조사되었다.
        4,000원