This study investigates the risk reduction effect and identifies the optimal capacity of Multi-barrier Accident Coping Strategy (MACST) facilities for nuclear power plants (NPPs) under seismic hazard. The efficacy of MACST facilities in OPR1000 and APR1400 NPP systems is evaluated by utilizing the Improved Direct Quantification of Fault Tree with Monte Carlo Simulation (I-DQFM) method. The analysis encompasses a parametric study of the seismic capacity of two MACST facilities: the 1.0 MW large-capacity mobile generator and the mobile low-pressure pump. The results demonstrate that the optimal seismic capacity of MACST facilities for both NPP systems is 1.5g, which markedly reduces the probability of core damage. In particular, the core damage risk is reduced by approximately 23% for the OPR1000 system, with the core damage fragility reduced by approximately 72% at 1.0g seismic intensity. For the APR1400 system, the implementation of MACST is observed to reduce the core damage risk by approximately 17% and the core damage fragility by approximately 44% under the same conditions. These results emphasize the significance of integrating MACST facilities to enhance the resilience and safety of NPPs against seismic hazard scenarios, highlighting the necessity for continuous adaptation of safety strategies to address evolving natural threats.
Recently, the floor construction method of buildings is rapidly being replaced by the steel deck construction method of factory products from the past cast-in-place formwork method in order to shorten construction period, reduce labor costs, and improve constructability. In this study, the bending capacity of a newly developed lattice integrated rib-type deck plate that is economical and constructible was evaluated through a simple beam test. As a result of the experiment, the lattice integrated rib-type deck installed by adding rib to the existing flat deck had excellent initial rigidity and maximum load-bearing ability, confirming the feasibility of practical use. In addition, the test specimen in which the tensile rebar is not integrated with the lattice and deck has very low initial stiffness, which is insufficient to support the load at the construction stage, and new details need to be developed to overcome this.
이 연구는 농촌개발에서 휴양이나 관광, 지역개발, 역량교육 등에 있어 참여하고 중심적 역할을 담당하 는 지역리더를 대상으로 리더역량이 조직몰입에 미치는 영향에서 소명의식의 매개효과를 분석하였 다. 조사지역과 대상은 전북특별자치도의 I군에서 농촌지역개발사업에 참여, 추진하고 있는 지역리더 를 대상으로 리더역량, 조직몰입, 소명의식에 관한 설문조사를 실시하였다. 설문조사는 2023년 11월 8일부터 11월 22일까지 진행되었다. 그리고 설문분석은 총 180부 중 173부를 분석하였다. 분석결과 첫 째, 지역리더는 60세 이상이 많았고 학력은 고학력이었으며, 지역내 거주기간은 21년 이상이 61.6%이 었다. 그리고 지역애착의 정도는 66.5%로 높았고 활동지역은 읍/면이 많았다. 둘째, 소명의식은 리더역 량과 조직몰입의 관계에서 부분매개의 역할을 하였다. 분석결과의 주요 시사점은 리더역량은 지역개 발사업의 성공이나 활성화 요인으로 작용하므로 새로운 가치의 창출과 지역주민의 참여를 적극적으 로 유도하는 리더의 변화가 필요하다. 또한 역량강화를 위해서 참여와 토론의 교육, 주민의 자치 향상, 지역 미래의 결정력 향상을 위해 노력해야 한다. 그리고 구성원의 참여와 협조가 중요하므로 지역리더 의 발굴과 인적자원의 육성, 지역내 거버넌스를 구축해 나가야 할 것이다.
PURPOSES : This study presents a formula for calculating the parking capacity of shared e-scooter parking spaces using the dimensions of the clearance spaces of sidewalks. The details are as follows: First, the discontinuity angle of the parking unit placement is derived. Second, the parameters of the sidewalk clearance lengths are derived. Third, a formula for calculating the parking capacity of shared e-scooter parking spaces is derived. Finally, we examine the applicability of the parking capacity calculation formula to actual sidewalk clearance spaces. METHODS : Based on literature reviews, a formula for the discontinuity angle of parking unit placement was derived using the sidewalk clearance widths and the geometric structure of parking units. Formulas for the parameters of the sidewalk clearance lengths were derived using the sidewalk clearance lengths and the geometric structure of the parking units. A formula for parking capacity calculation was derived using the formula for the parameters of the sidewalk clearance lengths and the discontinuity angle. Examples of the application of the parking capacity calculation formula to actual sidewalk clearance spaces are presented. RESULTS : The results of this study are listed as follows: The discontinuity angle for the placement of standard shared e-scooter parking units was derived. Additionally, a formula for the sidewalk clearance lengths was derived. Moreover, a formula for calculating the parking capacity of shared e-scooter parking spaces based on sidewalk clearance lengths and widths was derived. Finally, examples of the application of the parking capacity calculation formula to actual sidewalk clearance spaces are presented. CONCLUSIONS : A formula for calculation of the parking capacity of shared e-scooter parking spaces using the dimensions of the clearance space of sidewalks was derived and proposed. The parking capacity calculation formula presented in this study can contribute to the design of parking spaces to accommodate dockless shared e-scooters on sidewalks. Furthermore, it can also contribute to accommodating other types of dockless mobility. Future research can focus on designing parking spaces that consider the parking demands for shared e-scooters.
Background: In healthy dentin conditions, odontoblasts have an important role such as protection from invasion of pathogens. In mammalian teeth, progenitors such as mesenchymal stem cells (MSCs) can migrate and differentiate into odontoblast-like cells, leading to the formation of reparative dentin. For differentiation using stem cells, it is crucial to provide conditions similar to the complex and intricate in vivo environment. The purpose of this study was to evaluate the potential of differentiation into odonto/ osteoblasts, and compare co-culture with/without epithelial cells. Methods: MSCs and epithelial cells were successfully isolated from dental tissues. We investigated the influences of epithelial cells on the differentiation process of dental pulp stem cells into odonto/osteoblasts using co-culture systems. The differentiation potential with/without epithelial cells was analyzed for the expression of specific markers and calcium contents. Results: Differentiated odonto/osteoblast derived from dental pulp tissue-derived mesenchymal stem cells with/without epithelial cells were evaluated by qRT-PCR, immunostaining, calcium content, and ALP staining. The expression of odonto/ osteoblast-specific markers, calcium content, and ALP staining intensity were significantly increased in differentiated cells. Moreover, the odonto/osteogenic differentiation capacity with epithelial cells co-culture was significantly higher than without epithelial cells co-culture. Conclusions: These results suggest that odonto/osteogenic differentiation co-cultured with epithelial cells has a more efficient application.
Salinity stress is a major threat to plant growth and development, affecting crop yield and quality. This study investigated the effects of different salinity levels on photosynthetic responses and bulb growth of Lilium LA hybrid “‘Serrada’.” Plants were irrigated with 1 L of 0, 200, and 400 mM NaCl solutions every two weeks for 14 weeks in a greenhouse. At the end of the cultivation period, the substrate pH decreased, and electrical conductivity increased with increasing salinity. Regardless of salinity levels, the days to flowering and number of flowers were similar among treatments. In contrast, the flower width, plant height, number of leaves, and leaf area decreased with increasing NaCl concentrations. Although there were no differences in the photosystem II (PSII) operating efficiency and maximum quantum yield of PSII, net CO2 assimilation rates (An) and stomatal conductance (gs) were significantly reduced at 200 and 400 mM NaCl solutions compared to the control. At 400 mM NaCl solution, bulb diameter and weight significantly decreased at the end of the experiment. These results suggest that bulb growth inhibition could be attributed to limiting photosynthetic rate and stem growth. This finding suggests that salinity mitigation is necessary to maintain plant growth and photosynthetic capacity in lily cultivation on salt-affected soils.
In the present study, a calorimeter was used to experimentally investigate the heating capacity and COP changes according to the pipe length of a variable capacity A/C system with long pipes. Cooling capacity, COP, and compressor discharge temperature were obtained by changing pipe lengths and loading duties at fixed indoor and outdoor temperatures. And the operation status and cycle change process of the A/C system were investigated using some experimental data and P-h diagrams. As the pipe length changes, the heat transfer within the cycle and the operating load of the compressor change, so the heating capacity and COP of the system change. At the same loading duty, as the pipe length increases, the heating capacity and COP decrease. As the loading duty increased, the heating capacity increased almost linearly, but the COP decreased. Since the long pipe experimental value for the compressor discharge temperature has a temperature deviation of up to 1 7℃(50m, L/D : 10/10) from the correlation equation, the optimal correlation equation must be derived through additional research.
In the present study, a calorimeter was used to experimentally investigate the cooling capacity and COP changes according to the pipe length of a variable capacity A/C system with long pipes. Cooling capacity, COP, and compressor discharge temperature were obtained by changing pipe length and loading duty. And the operation status and cycle change process of the A/C system were investigated using some experimental data and P-h diagrams. In long pipes, the pressure drop increases and the operating load on the compressor increases. Additionally, at the same loading duty, cooling capacity and COP decrease and the compressor discharge temperature increases. As loading duty increases, cooling capacity and compressor power consumption increase. Since the temperature deviation between the experimental value and the correlation equation for the discharge temperature of the long-pipe compressor shows a maximum of 10.5℃(50m, L/D : 20/0), the existing correlation equation needs to be modified.
Evaporative emissions, a major cause of air pollution, are primarily produced by automobiles and can be recovered using adsorbents. This study investigated the effect of the textural properties of polyimide (PI)-based activated carbon fibers (PIACFs) on the adsorption and desorption performance of n-butane, which are a type of evaporative emissions. PI-ACFs were prepared by varying the activation time while maintaining the identical crosslinking and carbonization conditions. The surface morphology and microstructural properties of the ACFs were examined using a field emission scanning electron microscopy (FE-SEM) and X-ray diffraction (XRD), respectively. The textural properties of ACF (specific surface area, pore volume, and pore size distribution) were analyzed using N2/ 77 K adsorption and desorption isotherm curves. The n-butane adsorption and desorption performance were evaluated according to modified ASTM D5228. From the results, the specific surface area and total pore volume of ACFs were determined to be 680–1480 m2/ g and 0.28–1.37 cm3/ g, respectively. Butane activity (BA) of the ACFs increased from 14.1% to 37.1% as the activation time increased, and especially it was found to have highly correlated with pore volume in the 1.5–4.0 nm range.
In this study, the heating performance of a variable capacity A/C system was experimentally studied. A psychrometric calorimeter was used to obtain performance data of the A/C system using PWM(pluse width modulation) method and compare it with the compressor discharge temperature correlation equation. Heating capacity, COP, and compressor discharge temperature were obtained by changing indoor and outdoor temperatures, refrigerant amount, and loading duty. The following results were obtained by selecting 5 types of refrigerant amount, 3 types of outdoor temperature (fixed indoor temperature), and 2 types of loading duty. As the outdoor temperature increases, heating capacity and COP increase. Heating capacity was affected by both outdoor temperature and loading duty. However, COP was more influenced by outdoor temperature. The effect of increasing the amount of refrigerant on the performance of the A/C system was not significant. Additionally, the temperature deviation between the existing compressor discharge temperature correlation equation and the heating experiment data was about 5.1℃ at the maximum loading duty.
In this study, the cooling performance of a variable capacity A/C system was experimentally studied. A psychrometric calorimeter was used to obtain performance data of the A/C system using the pulse width modulation method and compare it with the compressor discharge temperature correlation equation. Cooling capacity, COP, and compressor discharge temperature were obtained by changing indoor and outdoor temperatures, refrigerant amount, and loading duty. The following results were obtained by selecting 5 types of refrigerant amount, 3 types of outdoor temperature (fixed indoor temperature), and 2 types of loading duty. As the outdoor temperature increased, cooling capacity and COP according to outdoor conditions decreased. And the higher the loading duty, the greater the cooling capacity, but the COP was minimal. The change in cooling capacity and COP due to the increase in refrigerant amount was not significant. Additionally, the change in compressor discharge temperature is more influenced by the outside temperature than by the loading duty.
교량의 내하력을 확인하기 위해서는 외관상태 점검 및 차량재하시험, 유한요소해석 수행이 필요하 다. 규모가 작은 교량은 시간 혹은 비용적인 문제로 인해, 상기 과업을 수행하여 내하력을 확인하기가 어려운 점이 있다. 본 연구에서는 플랫폼을 통해 교량의 정보를 등록하여 데이터의 분석에 의해 추정 내하성능을 제공하기 위한 연구를 수행하였다. 추정 내하성능 결과는 점검진단 보고서 상의 안전성 평 가 데이터를 수집하여 통계 분석에 의한 결과를 제공한다.
The design shear strength equations of RC shear walls have been developed based on their performance under in-plane (IP) loads, thereby failing to account for the potential performance degradation of shear strength when subjected to simultaneous out-of-plane (OOP) loading. Most of the previous experimental studies on RC walls have been conducted in one direction under quasi-static conditions, and due to the difficulty in experimental planning, there is a lack of research on cyclic loading and results under multi-axial loading conditions. During an earthquake, shear walls may yield earlier than their design strength or fail unexpectedly when subjected to multi-directional forces, deviating from their intended failure mode. In this paper, nonlinear analysis in finite element models was performed based on the results of cyclic loading experiments on reinforced concrete shear walls of auxiliary buildings. To investigate the reduction trend in IP shear capacity concerning the OOP load ratio, parametric analysis was conducted using the shear wall FEM. The analysis results showed that as the magnitude of the OOP load increased, the IP strength decreased, with a more significant effect observed as the size of the opening increased. Thus, the necessity to incorporate this strength reduction as a factor for the OOP load effect in the wall design strength equation should be discussed by performing various parametric studies.
The paper presents the experimental investigation of RC beams retrofitted with Textile Reinforced Mortar (TRM), featuring enhanced bond capacity. Anchoring systems, including an extension of retrofitting length and the use of chemical anchors, are newly employed to improve the structural performance of the RC beam retrofitted with TRM. For the experimental investigation, a total of seven shear-critical RC beams, with and without stirrups, were designed and constructed. The structural behaviors of specimens retrofitted with the proposed TRM methods were compared to those of non-retrofitted specimens or specimens strengthened with conventional TRM methods. Crack pattern, force-displacement relationship, and absorbed energy were evaluated for each specimen. The experimental results indicate a significant improvement in the shear capacity of the RC beam with the proposed retrofitting method. Therefore, it is concluded that the application of an extended retrofitting length and chemical anchors to the TRM retrofitting method can effectively enhance the bond capacity of TRM, thereby improving the shear performance of RC beams.
본 논문에서는 시간 의존적 거동을 고려하기 위한 크리프 거동 해석과 비탄성 해석법을 통해 기존의 설계기준 보다 정확하고 전 시 간 단계에서의 CFT 기둥의 해석을 가능하게 하는 수치 해석 모델을 제안하고, 기존의 CFT 기둥에 수행된 실험 결과와 비교하였다. 그 결과 본 논문에서 제안된 수치 해석 모델의 결과가 기존의 설계 기준의 결과보다 정확한 추세를 나타낸다는 것을 파악 할 수 있었다. 검증 이후 세장비에 따른 수치 해석을 수행하여 전반적인 CFT 기둥 부재의 단기 및 장기 지속 하중 거동에 대한 극한 하중의 정도를 확인하였다.
Cellulose has experienced a renaissance as a precursor for carbon fibers (CFs). However, cellulose possesses intrinsic challenges as precursor substrate such as typically low carbon yield. This study examines the interplay of strategies to increase the carbonization yield of (ligno-) cellulosic fibers manufactured via a coagulation process. Using Design of Experiments, this article assesses the individual and combined effects of diammonium hydrogen phosphate (DAP), lignin, and CO2 activation on the carbonization yield and properties of cellulose-based carbon fibers. Synergistic effects are identified using the response surface methodology. This paper evidences that DAP and lignin could affect cellulose pyrolysis positively in terms of carbonization yield. Nevertheless, DAP and lignin do not have an additive effect on increasing the yield. In fact, combined DAP and lignin can affect negatively the carbonization yield within a certain composition range. Further, the thermogravimetric CO2 adsorption of the respective CFs was measured, showing relatively high values (ca. 2 mmol/g) at unsaturated pressure conditions. The CFs were microporous materials with potential applications in gas separation membranes and CO2 storage systems.