In Korea, “group feeding facilities” are public establishments that offer food to large numbers of people, typically consisting of more than 50 individuals at a time. As of March 2024, there were 46,642 such meal facilities in Korea. Among these, 14,177 (30.4%) were kindergartens, 12,155 (26.1%) were schools, and 9,949 (21.3%) were industrial facilities. In February 2021, lung cancer among culinary workers in schools was first recognized as an occupational disease. Since then, the necessity of implementing health management of culinary workers and improving the cooking environment has become a pressing issue. Previous studies have identified various cooking pollutants such as particulate matter, volatile organic compounds, and aldehydes generated during the cooking process. These pollutants have been shown to significantly impact on both indoor and outdoor environments. They are initially produced in cooking spaces, can spread to indoor dining areas by diffusion, and are eventually emitted to the outside air through exhaust outlets. Therefore, this study investigated previous research on the characteristics of pollutants and the environmental impacts of cooking facilities, including facilities providing meals. Additionally, this study analyzed the current status and limitations of policies and pollutant management systems related to these facilities. Finally, to improve the cooking environment and safeguard the health of workers, this study proposed several recommendations. These include guidelines and management system proposals for controlling cooking pollutants.
In this study, hybrid devices were developed to simultaneously remove odor and particulate matter (PM) emitted during meat grilling, and their performance was evaluated. A ceramic filter system and surfactant microbubble plasma system were used to reduce particulate matter. For odor reduction, an electro-oxidation system, an ozone-active catalytic oxidation system, and a multi-adsorption filter system were used. By combining the above particulate matter reduction and odor reduction devices, the reduction efficiency of odor and particulate matter generated during meat grilling was analyzed. As a result, most of the six combined device conditions showed a reduction efficiency of more than 90% for particulate matter. The combined odor also showed a high reduction efficiency of less than 200 times the emission concentration standard. This study also evaluated 22 types of odorous substances, of which ammonia (NH3) and hydrogen sulfide (H2S) showed removal efficiencies of more than 99%. Therefore, it is expected that the combination of these technologies can be used and applied directly to the sites where meat grilling restaurants are located to effectively contribute to the simultaneous reduction of particulate matter and odor.
본 연구는 한국에서 시행 중인 탄소배출권 거래제도가 탄소중립을 달 성하는데 효과적으로 기여하고 효율적으로 작동할 수 있도록 정책적 시 사점을 제공하고자 한다. 이를 위해서, 탄소배출권 가격과 전산업생산지 수의 관계를 분석하였다. 즉, 탄소배출권 가격과 전산업생산지수의 선형 및 비선형 관계를 고려하여 경제학적 모형을 통해 추정 및 분석을 진행 하였다. 분석 방식은 구조변화를 반영한 방식과 임계값(문턱값)을 반영하 는 방식으로 나누어 모형을 구축하고 추정하였다. 그 결과, 한국의 탄소 배출권 가격과 전산업생산지수는 추정한 모형에서 비선형적 관계가 포착 되었다. 이러한 결과는 한국에서 시행 중인 탄소배출권 거래제도가 효율 적으로 작동할 수 있도록 추가적인 정책이 필요함을 시사한다. 예를 들 어, 산업 분야에서 저탄소 공정으로의 전환(또는 저탄소 경제로의 전환) 이 완전히 이루어지지 않은 현실을 고려할 때, 여전히 경제가 성장하는 상황에서 비선형 관계가 포착된다는 것은 탄소배출권 가격이 적정한 수 준을 유지하지 못하고 지속적으로 하락하는 추세를 나타낸다는 것이기 때문이다. 따라서, 탄소배출권 거래제도의 본래 취지인 탄소배출량의 감 축에 기여할 수 있도록 적정한 탄소배출권 가격이 배출권 거래제도하에 서 유지되도록 하는 정책을 고려해야 한다.
This study was conducted to estimate the effects of the forage process on rumen fermentation characteristics and greenhouse gas emissions of rye. Rye was grown at the Taeyoung Livestock farm and harvested at the heading stage. The harvested rye (5 kg) was sub-sampled for fresh forage, hay, and silage in triplicates. The sub-sampled rye was freeze-dried or air-dried for fresh forage or rye hay, respectively. For rye silage, the sub-sampled rye forage was ensiled into a 10 L mini bucket silo and stored for 90 days. For 72 h rumen incubation, each forage (0.3 g) was placed into the incubation bottle with the rumen mixture (30 mL) in quadruplicates. After the incubation, total gas was measured and sub-sampled for CO2 and CH4 analyses, and the bottle content was centrifuged for in vitro digestibilities of dry matter (IVDMD) and neutral detergent fiber (IVNDFD), and rumen fermentation characteristics. Silage had higher crude protein, crude ash, and acid detergent fiber concentrations than fresh forage and hay but lower non-fiber carbohydrates and relative feed value (p<0.05). And, silage had higher lactic acid bacteria than the other forages but lower pH (p<0.05). After 72 h incubation in the rumen, fresh forage had higher IVDMD and butyrate content than the other forages (p<0.05). However, silage had higher rumen pH and propionate content than the other forages but lower A:P ratio (p<0.05). Regarding greenhouse gases, silage had lowest total gas (mL/g DMD and NDFD) and CH4 (mL/g DMD and NDFD) emissions, while fresh forage had lowest CO2 (mL/g DMD) emission (p<0.05). Therefore, this study concluded that the ensiling process of rye can effectively mitigate greenhouse gas emissions of Hanwoo.
PURPOSES : The study aims to establish a comprehensive life cycle assessment model for bridges in South Korea considering domestic carbon emission factors. The main aims are to evaluate the carbon emission of bridge construction, focusing on the Seong-ri Bridge as a case study, and to improve national environmental policies and management strategies. METHODS : We utilized the life cycle assessment (LCA) methodology, adhering to standards set by ISO, to categorize each phase of the bridge's life cycle. The process involved selecting the bridge type based on the compilation of a detailed analysis range. The analysis covered various stages from raw material supply (A1-A3) to construction (A4-A5) and maintenance (B2-B5), excluding certain stages due to data unavailability. Carbon emission factors were then applied to quantify emissions at each stage. RESULTS : The findings indicate that the raw material production phase (A1-A3) contributes to approximately 96% of the total carbon emissions, highlighting its significant impact. We report detailed calculations of emissions using domestically developed emission factors for materials such as steel and concrete and establish a carbon emission per unit length measure for comparative analysis with other infrastructure. CONCLUSIONS : We leveraged LCA ISO standards to analyze each stage of the Seong-ri bridge, calculating its carbon emissions based on domestic factors for CO2, CH4, and N2O. By tailoring the study to Korea-specific emission factors, we develop a greenhouse gas model closely aligned with the nation’s environmental conditions. The results contribute to improving environmental impact assessments and strategically aiding national policy and management decisions.
PURPOSES : This study analyzed the amount of fuel consumption and atmospheric emissions by type of asphalt concrete mixtures. METHODS : Asphalt concrete mixture was produced directly at the plant, fuel consumption was measured compared to daily production, and atmospheric emissions emitted during the production process were measured. Hot and warm asphalt mixtures were produced, and analyses were conducted according to weather conditions and production volume. RESULTS : The fuel use per ton was confirmed to reduce energy by approximately 23.5% in WMA compared to HMA due to differences in the production temperature during the production of asphalt mixtures. Additionally, HMA production yielded 1.6 times higher atmospheric emissions for CO2 and 3.8 times higher for NOx than that for WMA, indicating that CO2 and NOx emissions tended to increase as fuel consumption increased. CONCLUSIONS : When producing asphalt mixtures, the production temperature, production volume, atmospheric conditions, and site conditions have a significant impact on fuel usage and atmospheric emissions.
PURPOSES : We propose a framework to evaluate the reliability of integrating homogeneous or heterogeneous mobility data to produce the various data required for greenhouse gas emission estimation. METHODS : The mobility data used in the framework were collected at a fixed time from a specific point and were based on raster data. In general, the traffic volume for all traffic measurement points over 24 h can be considered raster data. In the future, the proposed framework can be applied to specific road points or road sections, depending on the presence or absence of raster data. RESULTS : The activity data required to calculate greenhouse gas emissions were derived from the mobility data analysis. With recent developments in information, communication, and artificial intelligence technologies, mobility data collected from different sources with the same collection purpose can be integrated to increase the reliability and accuracy of previously unknown or inaccurate information. CONCLUSIONS : This study will help assess the reliability of mobility data fusion as it is collected on the road, and will ultimately lead to more accurate estimates of greenhouse gas emissions.
In the event of an emergency such as facility shutdown during process operation, the by-product gas must be urgently discharged to the vent stack to prevent leakage, fire, and explosion. At this time, the explosion drop value of the released by-product gas is calculated using ISO 10156 formula, which is 27.7 vol%. Therefore, it does not correspond to flammable gas because it is less than 13% of the explosion drop value, which is the standard for flammable gas defined by the Occupational Safety and Health Act, and since the explosion drop value is high, it can be seen that the risk of fire explosion is low even if it is discharged urgently with the vent stock. As a result of calculating the range of explosion hazard sites for hydrogen gas discharged to the Bent Stack according to KS C IEC 60079-10-1, 23 meters were calculated. Since hydrogen is lighter than air, electromechanical devices should not be installed within 23 meters of the upper portion of the Bent Stack, and if it is not possible, an explosion-proof electromechanical device suitable for type 1 of dangerous place should be installed. In addition, the height of the stack should be at least 5 meters so that the diffusion of by-product gas is facilitated in case of emergency discharge, and it should be installed so that there are no obstacles around it.
최근의 국제사회는 경제성장에 따른 기상이변의 방지를 위한 국가 간 기후변화협력 체결(1992년)을 시작으로 환경 오염물질 배출 저감을 요구하고 있다(Moon et al, 2014). 따라서 최근에는 전 세계적으로 지구온난화와 기후변화의 원인이 되는 온실가스의 발생을 줄 이고자 노력하고 있으며, 건설 산업은 이러한 온실가스 배출량의 주요 원인으로 인식되고 있다(Kong et al., 2016) 교량 건설사업이 환 경에 미치는 정도를 전과정평가(Life Cycle Assessment, LCA)방법을 활용하여 재료 및 공법의 지속가능성에 대한 객관적, 정량적 평가 체계를 구축하고자한다. 본 연구에서는 선행적으로 국내외 환경성적표지제도(Environment Product Declaration, EPD), 탄소발자국(Carbon footprint) 등을 분석함으로써, LCA 관련 제도에 대한 전반적인 동향을 파악하였다. 그다음, 국제적으로 통용되고 있는 제품 범주 규칙 (PCR)과 환경제품선언(EPD) 사례를 분석하여 LCA 관련 분석 범위를 확인했으며, 전과정영향평가(LCIA) 방법론과 국내외 LCI DB(Ecoinvent, Athena Pavement LCA, LCA PAVE 등)을 분석함으로써 국내외 환경 영향인자 관련 기술자료를 확보하였다. 또한, 건설 자재, 시공, 유지 관리 관련 설계 명세서, 표준품셈, 단가 산출표를 분석함으로써, 자재 투입량, 장비 연료 소모량에 대한 기초 DB를 도출하였다. 기존 프로그램을 토대로 고속도로 온실가스 산정 프로그램을 개발하여 건설자재, 수송, 시공, 유지 관리 단계에서의 탄소 배출량 산정 사례 분석을 수행했다. 교량 분야는 STEEL BOX교를 선정했다. 이에대하여 건설자재. 시공, 수송, 유지관리에 탄소배출량 을 산정하였다. 산정된 결과를 바탕으로 LCA분석의 기틀을 마련하였으며, 이를 통하여 추후 추가적인 기초 DB를 추가하여 교량 분야 전과정평가 LCA를 분석하기 위한 플랫폼을 제작할 예정이다.
산업화에 따른 이산화탄소 등 온실가스 발생량의 증가는 지구 온난화 현상을 가속화 하였다. 이러한 현상은 지난 수 세기동안 지속 되어왔으며 최근 우리 인간 삶에 지대한 영향을 미치고 있다. 이러한 위험에 따라 주요 선진국들은 에너지 감축 및 온실가스 배출량 제한에 대하여 매우 적극적인 입장을 취하고 있다. 유럽연합(EU)은 온실가스 배출 절감을 위해 시행 중인 ‘탄소배출권 거래제(Emission Traiding System)’ 개혁안에 대하여 합의하여 2050년까지 인위적 생성되는 탄소 배출량을 자연적으로 흡수되는 양과 동일하게 하는 ‘탄 소중립’을 목표로 제시하였다. 국내에선 환경영향평가의 대상이 되는 계획 및 개발사업에 도로건설이 포함되는 ‘탄소중립기본법 시행 령’이 지난 3월 의결되어 시행되었다. 이렇듯, 국내외에선 이러한 탄소저감 제도 구축에 노력을 기울이고 있다. 국내에선 도로건설이 환경영향평가의 대상으로 설정되었으나 2011년 국토교통부에서 배포한 시설물별 탄소배출량 산정 가이드라인 외의 구체적인 생애주기 분석 방법이 부재한 상황이다. 따라서 본 연구에서 국제 표준 ISO 14040의 전과정평가 LCA(Life Cycle Assessment) 방법과 2011년 국 토교통부의 시설물별 탄소배출량 산정 가이드라인을 따라 국내 LCI DB(Life Cycle Inventory Data Base)를 활용한 도로 분야의 전과정 탄소 배출량을 산정하였다. 이후 장비 연료 소모량과 자재 사용에 대한 국내외 LCI DB를 추가하여 도로 건설 전 과정에 대한 LCA 분석 플랫폼을 제작할 예정이다.
Agriculture is a pivotal player in the climate change narrative, contributing to greenhouse gas (GHG) emissions while offering potential mitigation solutions. This study delved into agriculture’s climate impact. It comprehensively analysed emissions from diverse agricultural sources, carbon sequestration possibilities, and the repercussions of agricultural emissions on climate and ecosystems. The study began by contextualising the historical and societal importance of agricultural GHG emissions within the broader climate change discourse. It then discussed into GHG emitted from agricultural activities, examining carbon dioxide, methane, and nitrous oxide emissions individually, including their sources and mitigation strategies. This research extended beyond emissions, scrutinising their effects on climate change and potential feedback loops in agricultural systems. It underscored the importance of considering both the positive and negative implications of emissions reduction policies in agriculture. In addition, the review explored various avenues for mitigating agricultural emissions and categorised them as sustainable agricultural practices, improved livestock management, and precision agriculture. Within each category, different subsections explain innovative methods and technologies that promise emissions reduction while enhancing agricultural sustainability. Furthermore, the study addressed carbon sequestration and removal in agriculture, focussing on soil carbon sequestration, afforestation, and reforestation. It highlighted agriculture’s potential not only to reduce emissions, but also to serve as a carbon reservoir, lowering overall GHG impact. The research also scrutinised the multifaceted nature of agriculture, examining the obstacles hindering mitigation strategies, including socioeconomic constraints and regulatory hurdles. This study emphasises the need for equitable and accessible solutions, especially for smallholder farmers. It envisioned the future of agricultural emissions reduction, emphasising the advancements in measurement, climate-smart agricultural technologies, and cross-sectoral collaboration. It highlighted agriculture’s role in achieving sustainability and resilience amid a warming world, advocating collective efforts and innovative approaches. In summary, this comprehensive analysis recognised agriculture’s capacity to mitigate emissions while safeguarding food security, biodiversity, and sustainable development. It presents a compelling vision of agriculture as a driver of a sustainable and resilient future.
This study examined the power consumption of angling boats during entry, departure, and fishing operations using a black box-type storage device. Through this analysis, it determined the energy consumption and carbon emissions of small fishing boats used for catching the largehead hairtail. The energy consumption and carbon emissions were calculated using formulas provided by the Korea Energy Agency, which incorporated updated emission coefficients from 2022. The findings revealed that the average power consumption of small fishing boats for the largehead hairtail was 546.3 kWh, with a total energy consumption of 0.1164 TOE and carbon emissions of 24.057 CO2. The average energy consumption was calculated at 0.0006 TOE per kilogram, and the carbon emissions were determined to be 0.135 CO2/kg.
PURPOSES : This study is aimed to economic analysis of the ferronickel slag pavement method carried out to suggest the necessity of developing ferronickel slag pavement technology. METHODS : A life cycle cost analysis of the application of the Ferronickel Slag pavement method and the cutting + overlay pavement method was performed to compare the economic indicators and greenhouse gas emissions for each pavement method. RESULTS : As a result of the analysis, regardless of the Ferronickel Slag mixing rate, if the common performance of the Ferronickel Slag pavement method is the same or superior to the existing pavement method, it is more economical than the existing pavement method. Furthermore, the lower the maintenance cost of the Ferronickel Slag pavement method, the higher the economic feasibility due to the high Ferronickel Slag mixing rate. Greenhouse gas emissions can be reduced from at least 9% to up to 53% through the application of the Ferronickel Slag pavement method, except for some scenario analysis results. CONCLUSIONS : This study provided that the Ferronickel Slag pavement method was superior to the existing pavement method in terms of economic and environmental aspects. Therefore, it was found that the objective justification of developing road pavement technology using Ferronickel Slag was secured.
이 연구는 팬데믹(pandemic) 전후 국제항공여객 운송시장을 대상으로 항공편 운항에 의한 CO2 배출 특성과 변화를 체계적으 로 파악하는 것을 주요 목적으로 한다. 이를 위해 2019년과 2021년 2분기 전 세계 국제여객 항공편 스케줄 데이터를 기반으로 ICAO(International Civil Aviation Organization)의 CERT(CO2 Estimation and Reporting Tool) 인벤토리를 이용하여 노선 단위의 CO2 배출량을 추정한 후, 노선의 대권 거리와 항공기의 크기를 기준으로 구분된 하부시장에 따른 CO2 배출량과 배출 효율성의 분포와 변화를 비교분석하였다. 주요 분석 결과는 다음과 같다. 첫째, 2021년 2분기 전 세계 국제항공여객 운송시장의 CO2 배출량은 약 31.6백만 톤으로 추정되었으며. 2019년 동 분기(117.95백만 톤) 대비 약 73.21% 감소하였다. 두 시기 모두 5,000km 이상의 장거리 시장, 그리고 100~400석 항공기 운용 시장에서의 배출량 비중이 높게 나타났다. 다만 팬데믹 기간에는 5,000km 이상, 그리고 400석 이상 항공기 시장에서 CO2 배출량의 감소가 두드러지게 나타났다. 둘째, 2021년 2분기 시장의 CO2 배출 효율성은 2019년 동 분기 대비 약 4% 향상되었다. 두 시기 모두 노선의 대권 거리와 항공기의 크기가 증가할수록 배출 효율성이 감소하는 경향이 존재하였으며, 팬데믹 기간 중 일부 하부시장에서는 구형 및 초대형 기종들의 운항 감축(혹은 중단)이 두드러짐에 따라 배출 효율성이 향상되기도 하였다. 마지막으로 팬데믹 전후 주요 국제노선들의 CO2 배출 효율성 변화를 탐색한 결과, 글로벌 허브 공항들을 연결하는 대륙 간 장거리 노선들을 중심으로 효율성이 낮게 나타난 반면, 차상위 계층 공항들과 연결된 일부 노선들, 그리고 동남아・동북아의 주요 공항들을 연결하는 역내 노선들은 상대적으로 효율성이 높게 나타났다. 본 연구는 팬데믹 전후 전 세계 국제항공여객 운송시장의 운영 실적과 CO2 배출에 대한 세부 특성과 변화를 실증적으로 분석했다는 점에서 의의가 있다.
The interest in greenhouse gases (GHG) emitted from all industries is emerging as a very important issue worldwide. This is affecting not only the global warming, but also the environmentally friendly competitiveness of the industry. The fisheries sector is increasingly interested in greenhouse gas emissions also due to the Paris Climate Agreement in 2015. Korean industry and government are also making a number of effort to reduce greenhouse gas emissions so far, but the effort to reduce GHG in the fishery sector is insufficient compared to other fields. Especially, the investigation on the GHG emissions from Korean fisheries did not carry out extensively. The studies on GHG emissions from Korean fishery are most likely dealt with the GHG emissions by fishery classification so far. However, the forthcoming research related to GHG emissions from fisheries is needed to evaluate the GHG emission level by species to prepare the adoption of Environmental labels and declarations (ISO 14020). The purpose of this research is to investigate which degree of GHG emitted to produce the species (swimming crab and snow crab) from various fisheries. Here, we calculated the GHG emission to produce the species from the fisheries using the life cycle assessment (LCA) method. The system boundary and input parameters for each process level are defined for LCA analysis. The fuel use coefficients of the fisheries for the species are also calculated according to the fuel type. The GHG emissions from sea activities by the fisheries will be dealt with. Furthermore, the GHG emissions for producing the unit weight species and annual production are calculated by fishery classification. The results will be helpful to establish the carbon footprint of seafood in Korea.
The “Carbon Neutral” has become the most important goal to achieve in the era of the climate change crisis. K-water has prepared a roadmap for implementing “Carbon Neutral” by 2050. However, only the reduction targets and strategies for scope 1 and 2 have been set, so the management of carbon generated during the construction project and upfront carbon is not being implemented. Therefore, in this study, the criteria and methodology for estimation carbon emissions in the construction sector at domestic and foreign were reviewed, and a methodology for estimation carbon emissions suitable for K-water construction projects was presented, and a case study was conducted. As a result, most of the carbon emissions were more than 90% of the upfront emissions due to material production. Therefore, upfront carbon management is required for carbon management of K-water construction projects, and it is necessary to quantify carbon emissions through GHG construction inventory, etc., and to establish strategies for future reduction technologies.