Background: Recent research suggests that the most effective and proactive method for correcting excessive pronation, which contributes to the lowering of the medial longitudinal arch, is to enhance both intrinsic and extrinsic foot muscles simultaneously. Objectives: This study aims to compare the effects of intrinsic and extrinsic foot muscle exercises on medial longitudinal arch height, plantar pressure distribution, and lactate levels in university students with flexible flatfoot. Design: Randomized controlled trial study. Methods: Twenty-two students with flexible flat foot participated in this study and were recruited by N University in Korea. The subjects were randomly divided into Intrinsic foot muscle strengthening group (IFG; n=11) that went through Intrinsic foot muscle strengthening exercise, Extrinsic foot muscle strengthening group (EFG; n=11) that went through extrinsic foot muscle strengthening exercise. SPSS was used for statistical analysis. Results: Both groups showed significant increases in medial arch height and first metatarsal bone pressure, while EFG also had increased pressure at the second to fourth metatarsal bones. No significant differences were found in lactate levels. Conclusion: Both intrinsic and extrinsic foot muscle strengthening exercises can be suggested as effective interventions for improving medial longitudinal arch height and plantar pressure.
Lactic acid bacterial (LAB) fermentation is frequently used to enhance the nutritional and functional properties of natural products. Oysters (Crassostrea gigas), a marine bivalve mollusc, have long been used in food applications. In the present study, we explored the effects of LAB fermentation on the physiological activity of C. gigas. To identify new starter strains, we isolated and screened LAB from local specialties in Sacheon, South Korea. Eighteen LAB strains were identified by 16S rRNA gene sequencing, four of which exhibited protease activity. All the four isolates were identified as Latilactobacillus curvatus. Fermentation was carried out in a medium containing C. gigas powder for three days. After incubation, the antioxidant activity in the culture supernatant of fermented C. gigas with L. curvatus GH-118-24 increased by approximately 139.2% compared with that of the non-fermented control. Additionally, the extract of fermented C. gigas for three days showed significant improvements in anti-inflammatory and anti-diabetic effects, with increases of over 71.2% and 253.8%, respectively, compared to the non-fermented extract. These results suggested that the selected LAB strains have potential as starters capable of enhancing the bioactive properties of food, thus highlighting the importance of genetic resources in South Korea.
To increase industrial applicability of Astragalus membranaceus (AM) as immunostimulating materials, hot-water extract (AME) was prepared from AM and fermented with Kimchi-lactic acid bacteria (Lactobacillus sakei & Leuconostoc mesenteroides) to prepare fermented AM-postbiotics (FAME). Although FAME prepared from AM-postbiotics did not show a significant enhancement in macrophage stimulating activity compared to non-fermented AME, crude polysaccharide (FAME-CP) fractionated by EtOH precipitation from FAME showed significantly higher macrophage stimulating activity than AME-CP. Compared to AME-CP, FAME-CP showed dramatic changes in component sugar and molecular weight distribution. FAME-CP was a polysaccharide with a major molecular weight distribution of 113.4 kDa containing Man (44.2%), Glc (19.3%), Gal (10.2%), GalA (10.2%), and Ara (7.4%) as sugar components. FAME-CP with enhanced macrophage stimulatory activity not only increased expression levels of mRNA genes encoding macrophage-activated factors (iNOS, TNF-α, MCP-1, IL-6, and COX-2), but also led the nuclear translocation of activated p65 and c-Jun. In conclusion, crude polysaccharide from AM-postbiotics fermented with lactic acid bacteria could increase industrial applicability as a functional material with enhanced immunostimulating activity than AME-CP.
In this study, we examined the antagonistic effects of sprout-borne lactic acid bacteria (LAB) on Salmonella enterica serovar Enteritidis. This antagonism is promoted as a means of controlling contamination during sprout production and provides additional LAB for consumers. We isolated a total of 24 LAB isolates in nine species and five genera from seven popular vegetable sprouts: alfalfa (Medicago sativa), clover (Trifolium pratense), broccoli (Brassica oleracea ssp. italica), vitamin (B. rapa ssp. narinosa), red radish (Raphanus sativus), red kohlrabi (B. oleracea var. gongylodes), and Kimchi cabbage (B. campestris var. pekinensis). Based on 16S rRNA gene sequences, the LAB species were identified as Enterococcus casseliflavus, E. faecium, E. gallinarum, E. mundtii, Lactococcus taiwanensis, Leuconostoc mesenteroides, Pediococcus pentosaceus, and Weissella cibaria, and W. confusa. A total of 16 LAB isolates in seven species including E. faecium, E. gallinarum, E. mundtii, L. taiwanensis, L. mesenteroides, P. pentosaceus, and W. cibaria showed antagonistic activity toward S. enterica. The growth inhibition of sprout LAB on S. enterica was confirmed by co-culture. Unexpectedly, sprout LAB failed to suppress the growth of S. enterica in alfalfa sprouts, whereas all LAB strains stimulate S. enterica growth even if it is not significant in some strains. The findings of this study indicate that S. enterica-antagonistic LAB are detrimental to food hygiene and will contribute to further LAB research and improved vegetable sprout production.
This study evaluated the effect of lactic acid bacteria (LAB, a mixture of Enterococcus faecium and Lactobacillus plantarum) supplementation, the storage temperature, and storage period on the fermentation characteristics and in vitro ruminal digestibility of a total mixed ration (TMR). The TMR was prepared into two groups, namely, CON (control TMR without the LAB) and ML (supplementing a mixture of E. faecium and L. plantarum in the ratio of 1% and 2% (v/w), respectively). Both groups were divided and stored at 4°C or 25°C for 3, 7, and 14 d fermentation periods. Supplementing LAB to the TMR did not affect the chemical composition of TMR except for the lactate and acetate concentration. Storage temperatures affected (p<0.05) the chemical composition of the TMR, including pH, lactate, and acetate contents. The chemical composition of TMR was also affected (p<0.05) by the storage period. During in vitro rumen fermentation study, the ML treatment showed lower (p<0.05) dry matter digestibility at 24 h incubation with a higher pH compared to the CON. There was no difference in the in vitro dry matter digestibility (IVDMD) of TMR between the CON and ML treatment however, at 24 h, ML treatment showed lower (p<0.05) IVDMD with a higher pH compared to the CON. The effects of storage temperature and period on IVDMD were not apparent at 24 h incubation. In an in vivo study using Holstein steers, supplementing LAB to the basal TMR for 60 d did not differ in the final body weight and average daily gain. Likewise, the fecal microbiota did not differ between CON and ML. However, the TMR used for the present study did include a commercial yeast in CON, whereas ML did not; therefore, results were, to some extent, compromised in examining the effect of LAB. In conclusion, storage temperature and period significantly affected the TMR quality, increasing acetate and lactate concentration. However, the actual effects of LAB supplementation were equivocal.
To enhance the bioavailability and bioactivities of mixed herbal medicines (RW), they were fermented with lactic-acid bacteria isolated from kimchi into postbiotics (FRW). Then, from the results of the 16s rRNA sequencing analysis, lactic acid bacteria isolated from kimchi were identified to be of two species, namely Lactobacillus sakei and Leuconostoc mesenteroides. The FRW prepared from the RW were extracted using hot water (HW) and 70% EtOH (EtOH) for comparison of their macrophage-stimulating activities. Based on a comparison of the activities of the FRW extracts, nitric oxide (NO) production of HW was significantly higher than that in EtOH. An analysis of the chemical properties of the extracts showed that HW had higher contents of neutral sugar and uronic acid than EtOH as well as contained a large amount of glucose. In addition, crude polysaccharide (CP) was prepared to enhance the macrophage-stimulating activity. The FRW-CP not only secreted immunostimulatory mediators but also increased the expression of immunostimulatory genes (iNOS, TNF-α, MCP-1, and IL-6). The fractionated FRW-CP contained about 90% neutral sugars, and these sugars were mainly composed of glucose, galacturonic acid, and arabinose. Thus, FRW prepared by fermentation of RW with kimchi lactic acid bacteria were found to be immunostimulatory modulators.
This study aimed to investigate the effects of antioxidant and anti-inflammatory activities of heat-killed lactic acid bacteria (LAB) produced under different temperature conditions. Regarding probiotic properties, Limosilactobacillus fermentum SMF743 and Lactiplantibacillus plantarum SMF796 isolated from kimchi showed strong acid and bile salt resistance, adhesion activity onto HT-29 cells, and antimicrobial activity against pathogenic bacteria. Based on the results of thermal death time and temperature, heat-killed LAB cells (1 mg/mL) were prepared by heating at 70oC (180 min), 80oC (120 min), 100oC (30 min), and 121oC (15 min). The heat-killed SMF743 and SMF796 showed significantly higher DPPH and ABTS radical scavenging activities than live cells (p<0.05). The heat-killed SMF743 and SMF796 at 70oC or 121oC revealed stronger DPPH and ABTS radical scavenging activities and inhibition of nitric oxide production than those at 80oC or 100oC. Furthermore, heat-killed SMF743 and SMF796 at 121oC significantly reduced the gene expression levels of tumor necrosis factor-, inducible nitric oxide synthase, and cyclooxygenase- 2 up to 53.33%, 58.67%, and 83.67%, respectively, in lipopolysaccharide (LPS)-induced RAW264.7 cells (p<0.05). These results suggest that heat-killed L. fermentum SMF743 and L. plantarum SMF796 can be used as natural antioxidants and anti-inflammatory agents.
Lactic acid bacteria as probiotics are intensively used in human and animal species. These probiotic properties of LABs were variable according to bacterial strain and species. However, there was limited information on probiotic properties of monkey origin LABs. In this study, we investigated the antibacterial activity of monkey and human origin LABs against monkey origin enteric bacteria by the agar disc diffusion test and broth culture inhibition assay. All LABs represented enough tolerance to pepsin (0.3%) and bile acid (pH = 2). To 50% of Clostridium perfringens and 20% of Escherichia coli, monkey origin LABs showed statistically higher antibacterial activity compared to human origin LABs (p < 0.05). Also, distinct antibacterial activity was verified among some bacteria species and strains. Higher antibacterial activity against enteric bacteria except for C. perfringens was verified in Lactobacillus johnsonii strains compared to Lactobacillus reuteri and Lactobacillus salivarius. Statistically different antibacterial activity against C. perfringens was verified among strains within L. reuteri and L. johnsonii. In conclusion, we prove the higher probiotic properties of monkey origin LABs against homogenous enteric bacteria although humans and monkeys were phylogenetically similar species. For non-human primates, homogenous LABs should be used as probiotics, not human origin LABs. Furthermore, it was confirmed among monkey origin LABs, L. johnsonii showed a high antibacterial activity on various enteric pathogenic bacteria and was an appropriate lactic acid strain for inhibiting C. perfringens.