검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 25

        2.
        2023.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Flexible supercapacitors (FS) are ideal as power backups for upcoming stretchable electronics due to their high power density and good mechanical compliance. However, lacking technology for FS mass manufacturing is still a significant obstacle. The present study describes a novel method for preparing FS based on reduced graphene oxide (RGO) using the N+ plasma technique, in which N+ reduces graphene oxide on the surface of a cotton/polyester substrate. The effect of aloe vera (AV) as a natural reducing & capping agent and carbon nanotubes (CNT) as nanoconductors on the electrochemical performance of the electrodes is studied. FESEM and XPS were employed to investigate the electrodes' structural and chemical composition of electrodes. The galvanostatic charge–discharge curves of electrodes revealed the enhancement of the electrochemical activity of the as-prepared electrode upon additions of AV and CNT. The areal capacitance of the RGO, RGO/AV, and RGO/ AV/CNT supercapacitors at 5 mV/s was 511, 1244.5, and 1879 mF/cm2, respectively. The RGO electrode showed capacitive retention of 80.9% after 2000 cycles enhanced to 89.7% and 92% for RGO/AV and RGO/AV/CNT electrodes, respectively. The equivalent series resistance of the RGO electrode was 126.28 Ω, decreased to 56.62 and 40.06 Ω for RGO/AV and RGO/ AV/CNT electrodes, respectively.
        4,000원
        3.
        2023.07 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        In the present work, we address the new route for the green synthesis of manganese dioxide (MnO2) by an innovative method named the solution plasma process (SPP). The reaction mechanism of both colloidal and nanostructured MnO2 was investigated. Firstly, colloidal MnO2 was synthesized by plasma discharging in KMnO4 aqueous solution without any additives such as reducing agents, acids, or base chemicals. As a function of the discharge time, the purple color solution of MnO4 - (oxidation state +7) was changed to the brown color of MnO2 (oxidation state +4) and then light yellow of Mn2+ (oxidation state +2). Based on the UV-vis analysis we found the optimal discharging time for the synthesis of stable colloidal MnO2 and also reaction mechanism was verified by optical emission spectroscopy (OES) analysis. Secondly, MnO2 nanoparticles were synthesized by SPP with a small amount of reducing sugar. The precipitation of brown color was observed after 8 min of plasma discharge and then completely separated into colorless solution and precipitation. It was confirmed layered type of nanoporous birnessite- MnO2 by X-ray powder diffraction (XRD), fourier-transform infrared spectroscopy (FT-IR), and electron microscopes. The most important merits of this approach are environmentally friendly process within a short time compared to the conventional method. Moreover, the morphology and the microstructure could be controllable by discharge conditions for the appropriate potential applications, such as secondary batteries, supercapacitors, adsorbents, and catalysts.
        4,000원
        4.
        2023.06 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        To develop a high capacity lithium secondary battery, a new approach to anode material synthesis is required, capable of producing an anode that exceeds the energy density limit of a carbon-based anode. This research synthesized carbon nano silicon composites as an anode material for a secondary battery using the RF thermal plasma method, which is an ecofriendly dry synthesis method. Prior to material synthesis, a silicon raw material was mixed at 10, 20, 30, 40, and 50 wt% based on the carbon raw material in a powder form, and the temperature change inside the reaction field depending on the applied plasma power was calculated. Information about the materials in the synthesized carbon nano silicon composites were confirmed through XRD analysis, showing carbon (86.7~52.6 %), silicon (7.2~36.2 %), and silicon carbide (6.1~11.2 %). Through FE-SEM analysis, it was confirmed that the silicon bonded to carbon was distributed at sizes of 100 nm or less. The bonding shape of the silicon nano particles bonded to carbon was observed through TEM analysis. The initial electrochemical charging/ discharging test for the 40 wt% silicon mixture showed excellent electrical characteristics of 1,517 mAh/g (91.9 %) and an irreversible capacity of 133 mAh/g (8.1 %).
        4,000원
        5.
        2023.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, an Al82Ni7Co3Y8 (at%) bulk metallic glass is fabricated using gas-atomized Al82Ni7Co3Y8 metallic glass powder and subsequent spark plasma sintering (SPS). The effect of powder size on the consolidation of bulk metallic glass is considered by dividing it into 5 m or less and 20–45 m. The sintered Al82Ni7Co3Y8 bulk metallic glasses exhibit crystallization behavior and crystallization enthalpy similar to those of the Al82Ni7Co3Y8 powder with 5 m or less and it is confirmed that no crystallization occurred during the sintering process. From these results, we conclude that the Z-position-controlled spark plasma sintering process, using superplastic deformation by viscous flow in the supercooled liquid-phase region of amorphous powder, is an effective process for manufacturing bulk metallic glass.
        4,000원
        7.
        2020.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        W2C is synthesized through a reaction-sintering process from an ultrafine-W and WC powder mixture using spark plasma sintering (SPS). The effect of various parameters, such as W:WC molar ratio, sintering temperature, and sintering time, on the synthesis behavior of W2C is investigated through X-ray diffraction (XRD) analysis, scanning electron microscopy (SEM) analysis of the microstructure, and final sintered density. Further, the etching properties of a W2C specimen are analyzed. A W2C sintered specimen with a particle size of 2.0 μm and a relative density over 98% could be obtained from a W-WC powder mixture with 55 mol%, after SPS at 1700℃ for 20 min under a pressure of 50 MPa. The sample etching rate is similar to that of SiC. Based on X-ray photoelectron spectroscopy (XPS) analysis, it is confirmed that fluorocarbon-based layers such as C-F and C-F2 with lower etch rates are also formed.
        4,000원
        8.
        2018.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This paper examines a simple one-step and catalyst-free method for synthesizing carbon nanoparticles from aliphatic alcohols and n-hexane with linear molecule formations by using a stable solution plasma process with a bipolar pulse and an external resistor. When the external resistor is adopted, it is observed that the current spikes are dramatically decreased, which induced production of a more stable discharge. Six aliphatic linear alcohols (methanol- hexanol) containing carbon with oxygen sources are studied as possible precursors for the massive production of carbon nanoparticles. Additional study is also carried out with the use of n-hexane containing many carbons without an oxygen source in order to enhance the formation of carbon nanoparticles and to eliminate unwanted oxygen effects. The obtained carbon nanoparticles are characterized with field emission-scanning electron microscopy, energy dispersive X-ray spectroscopy, and Raman spectroscopy. The results show that with increasing carbon ratios in alcohol content, the synthesis rate of carbon nanoparticles is increased, whereas the size of the carbon nanoparticles is decreased. Moreover, the degree of graphitization of the carbon nanoparticles synthesized from 1-hexanol and n-hexane with a high carbon (C)/oxygen (O) ratio and low or no oxygen is observed to be greater than that of the carbon nanoparticles synthesized from the corresponding materials with a low C/O ratio.
        4,000원
        9.
        2018.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Boron nitride nanotubes (BNNTs) are receiving great attention because of their unusual material properties, such as high thermal conductivity, mechanical strength, and electrical resistance. However, high-throughput and highefficiency synthesis of BNNTs has been hindered due to the high boiling point of boron (~ 4000℃) and weak interaction between boron and nitrogen. Although, hydrogen-catalyzed plasma synthesis has shown potential for scalable synthesis of BNNTs, the direct use of H2 gas as a precursor material is not strongly recommended, as it is extremely flammable. In the present study, BNNTs have been synthesized using radio-frequency inductively coupled thermal plasma (RF-ITP) catalyzed by solid-state ammonium chloride (NH4Cl), a safe catalyst materials for BNNT synthesis. Similar to BNNTs synthesized from h-BN (hexagonal boron nitride) + H2, successful fabrication of BNNTs synthesized from h-BN+NH4Cl is confirmed by their sheet-like properties, FE-SEM images, and XRD analysis. In addition, improved dispersion properties in aqueous solution are found in BNNTs synthesized from h-BN +NH4Cl.
        4,000원
        10.
        2017.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        We synthesized YOF(yttirum oxyfluoride) powders through solid state reactions using Y2O3 and YF3 as raw materials. The synthesis of crystalline YOF was started at 300 oC and completed at 500 oC. The atmosphere during synthesis had a negligible effect on the synthesis of the YOF powder under the investigated temperature range. The particle size distribution of the YOF was nearly identical to that of the mixed Y2O3 and YF3 powders. When the synthesized YOF powders were used as a raw material for the suspension plasma spray(SPS) coating, the crystalline phases of the coated layer consisted of YOF and Y2O3, indicating that oxidation or evaporation of YOF powders occurred during the coating process. Based on thermogravimetric analysis, the crystalline formation appeared to be affected by the evaporation of fluoride because of the high vapor pressure of the YOF material.
        4,000원
        11.
        2017.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Tin dioxide nanoparticles are prepared using a newly developed synthesis method of plasma-assisted electrolysis. A high voltage is applied to the tin metal plate to apply a high pressure and temperature to the synthesized oxide layer on the metal surface, producing nanoparticles in a low concentration of sulfuric acid. The particle size, morphology, and size distribution is controlled by the concentration of electrolytes and frequency of the power supply. The as-prepared powder of tin dioxide nanoparticles is used to fabricate a gas sensor to investigate the potential application. The particle-based gas sensor exhibits a short response and recovery time. There is sensitivity to the reduction gas for the gas flowing at rates of 50, 250, and 500 ppm of H2S gas.
        4,000원
        12.
        2014.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, we report the sintering behavior and properties of a Ge2Sb2Te5 alloy powders for use as asputtering target by spark plasma sintering. The effect of various sintering parameters, such as pressure, temperature andtime, on the density and hardness of the target has been investigated in detail. Structural characterization was performedby scanning electron microscopy and X-ray diffraction. Hardness and thermal properties were measured by differentialscanning calorimetry and micro-vickers hardness tester. The density and hardness of the sintered Ge2Sb2Te5 materialswere 5.8976~6.3687 g/cm3 and 32~75 Hv, respectively.
        4,000원
        13.
        2013.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, the synthesis of nickel nanoparticles and copper nanospheres for the potential applications of MLCC electrode materials has been studied by plasma arc evaporation method. The change in the broad distribution of the size of nickel and copper nanopowders is successfully controlled by manifesting proper mixture of gas ambiance for plasma generation in the size range of 20 to 200 nm in diameter. The factors affecting the mean diameter of the nanopowder was studied by changing the composition of reactive gases, indicating that nitrogen enhances the formation of larger particles compared to hydrogen gas. The morphologies and particle sizes of the metal nanoparticles were observed by SEM, and ultrathin oxide layers on the powder surface generated during passivation step have been confirmed using TEM. The metallic FCC structure of the nanoparticles was confirmed using powder X-ray diffraction method.
        4,600원
        14.
        2013.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        A bulk metallic glass-forming alloy, metallic glass powders was used for good commercial availability and good formability in supercooled liquid region. In this study, the Ni-based metallic glass was synthesized using by high pressure gas atomized metallic glass powders. In order to create a bulk metallic glass sample, the metallic glass powders with ball-milled Ni-based amorphous powder with 40%vol brass powder and Cu powder for 20 hours. The composite specimens were prepared by Spark Plasma Sintering for the precursor. The SPS was performed at supercooled liquid region of Ni-based metallic glass. The amorphous structure of the final sample was characterized by SEM, X-ray diffraction and DSC analysis.
        3,000원
        15.
        2010.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In the present work, water-based gold nanofluids were synthesized by the solution plasma processing (SPP). The size distribution and the shape of gold nanoparticles in the nanofluids were investigated using high resolution transmission electron microscopy (HR-TEM). The dispersion stability of gold nanofluids was characterized using zeta potential, as well. The thermal properties of gold nanofluids were measured by utilizing lambda measurement device. Nanofluids containing nanoparticles with in diameter were successfully synthesized. As diameter of nanoparticles decreased, dispersion stability of nanofluids increased and the enhanced ratio of thermal conductivity increased. The nanofluid with nanoparticles of in diameter showed approximately 3% improvement in thermal conductivity measurement and this could be due to the enhanced Brownian movement.
        4,000원
        16.
        2009.10 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Graphene has been effectively synthesized on Ni/SiO2/Si substrates with CH4 (1 SCCM) diluted in Ar/H2(10%) (99 SCCM) by using an inductively-coupled plasma-enhanced chemical vapor deposition. Graphene was formed on the entire surface of the 500 nm thick Ni substrate even at 700 ˚C, although CH4 and Ar/H2 gas were supplied under plasma of 600 W for 1 second. The Raman spectrum showed typical graphene features with D, G, and 2D peaks at 1356, 1584, and 2710 cm-1, respectively. With increase of growth temperature to 900 ˚C, the ratios of the D band intensity to the G band intensity and the 2D band intensity to the G band intensity were increased and decreased, respectively. The results were strongly correlated to a rougher and coarser Ni surface due to the enhanced recrystallization process at higher temperatures. In contrast, highquality graphene was synthesized at 1000 ˚C on smooth and large Ni grains, which were formed by decreasing Ni deposition thickness to 300 nm.
        4,000원
        17.
        2008.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The present study focused on the synthesis of a bismuth-antimony-tellurium-based thermoelectric nanopowders using plasma arc discharge process. The chemical composition, phase structure, particle size of the synthesized powders under various synthesis conditions were analyzed using XRF, XRD and SEM. The powders as synthesized were sintered by the plasma activated sintering. The thermoelectric properties of sintered body were analyzed by measuring Seebeck coefficient, specific electric resistivity and thermal conductivity. The chemical composition of the synthesized Bi-Sb-Te-based powders approached that of the raw material with an increasing DC current of the are plasma. The synthesized Bi-Sb-Te-based powder consist of a mixed phase structure of the , and phases. This powder has homogeneous mixing state of two different particles in an average particle size; about 100nm and about 500nm. The figure of merit of the sintered body of the synthesized 18.75 wt.%Bi-24.68 wt.%Sb-56.57 wt.%Te nanopowder showed higher value than one of the sintered body of the mechanically milled 12.64 wt.%Bi-29.47 wt.%Sb-57.89 wt.%Te powder.
        4,000원
        18.
        2007.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The present study was focused on the synthesis of a dispersed copper matrix composite material by the combination of the mechanical milling and plasma activated sintering processes. The mixed powder was prepared by the combination of the mechanical milling and reduction processes using the copper oxide and titanium diboride powder as the raw material. The synthesized mixed powder was sintered by the plasma activated sintering process. The hardness and electric conductivity of the sintered bodies were measured using micro vickers hardness and four probe method, respectively. The relative density of composite material sintered at showed about 98% of theoretical density. The composite material has a hardness of about 130Hv and an electric conductivity of about 85% IACS. The hardness and electric conductivity of composite material were about 140 Hv and about 45% IACS, respectively.
        4,000원
        19.
        2007.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The present study was focused on the synthesis of a zirconium-based alloyed nanopowder by the plasma arc discharge process. The chemical composition, phase structure, particle size and hydrogen sorption property of the synthesized powders under various synthesis conditions were analyzed using XRF, XRD, SEM, XPS and the ASTM-F798 method. The chemical composition of the synthesized Zr-V-Fe-based powders approached that of the raw material with an increasing hydrogen fraction in the powder synthesis atmosphere. The synthesized powder consist of a mixed phase structure of the phases. This powder has an average particle size of about 20 nm. The synthesized nanopowder showed getter characteristics, even though it had a lower hydrogen sorption speed than the getter powder. However, the synthesized Zr nanopowder with an average particle size of 20 nm showed higher hydrogen sorption speed than the getter powder.
        4,000원
        20.
        2006.09 구독 인증기관·개인회원 무료
        Cu- nanocomposite powders were synthesized by combining high-energy ball-milling of Cu-Ti-B mixtures and subsequent self-propagating high temperature synthesis (SHS). Cu-40wt.% powders were produced by SHS reaction and ball-milled. The milled SHS powder was mixed with Cu powders by ball milling to produce Cu-2.5wt.% composites. particles less than 250nm were formed in the copper matrix after SHS-reaction. The releative density, electrical conductivity and hardness of specimens sintered at were nearly 98%, 83%IACS and 71HRB, respectively. After heat treatment at 850 to for 2 hours under Ar atmosphere, hardness was descedned by 15%. Our Cu- composite showed good thermal stability at eleveated temperature.
        1 2