Somatic cell nuclear transfer (SCNT) in pigs has been used as a very important tool to produce transgenic for the pharmaceutical protein, xenotransplantation, and disease model and basic research of cloned animals. However, the production efficiency of SCNT embryos is very low in pigs and miniature pigs. The type of donor cell is an important factor influencing the production efficiency of these cloned pigs. Here, we investigated the developmental efficiency of SCNT embryos to blastocysts and full term development using fetal fibroblasts (FF) and mesenchymal stem cells (MSCs) to identify a suitable cell type as donor cell. We isolated each MSCs and FF from the femoral region and fetus. Cultured donor cell was injected into matured embryos for cloning. After that, we transferred cloned embryos into surrogate mothers. In term of in vitro development, the SCNT embryos that used MSCs had significantly higher in cleavage rates than those of FF (81.5% vs. 72%) (p<0.05), but the blastocyst formation rates and apoptotic cell ratio was similar (15.1%, 6.18% vs. 20.8%, 9.32%). After embryo transferred to surrogates, nine and nineteen clone piglets were obtained from the MSCs and FF group, respectively, without significant differences in pregnancy and birth rate (50%, 40% vs. 52.3%, 45.4%) (p>0.05). Moreover, there was no significant difference in the corpus hemorrhagicum numbers of ovary, according to pregnancy, abortion, and delivery of surrogate mothers between MSCs and FF groups. Therefore, the MSCs and FF are useful donor cells for production of clone piglets through SCNT, and can be used as important basic data for improving the efficiency of production of transgenic clone pigs in the future.
The Somatic cell nuclear transfer (SCNT) method can be applied to various fields such as species conservation, regenerative medicine, farming industries and drug production. However, the efficiency using SCNT is very low for many reasons. One of the troubles of SCNT is that it is highly dependent on the researcher’s competence. For that reason, four somatic cell nuclear injection methods were compared to evaluate the effect of hole-sealing process and existence of cytochalasin B (CB) on efficiency of murine SCNT protocol. As a results, the microinjection with the hole-sealing process, the oocyte plasma membrane is inhaled with injection pipette, in HCZB with CB was presented to be the most efficient for the reconstructed in SCNT process. In addition, we demonstrated that the oocytes manipulated in Hepes-CZB medium (HCZB) with CB does not affect the developmental rate and the morphology of the blastocyst during the pre-implantation stage. For this reason, we suggest the microinjection involving hole-sealing in HCZB with CB could improve SCNT process efficiency.
Commercial applications of OPU/IVP were to produce embryos and calves from high genetic cows.The aim of this present study was to compare the number of recovered oocytes and cultured in vitro produced embryos from Ovum Pick-up (OPU). OPU derived embryo production was carried out of oocytes by ultrasonographic guided follicular aspiration and then produced in vitro produced blastocysts by IVP culture system. In result, the rate of recovered oocytes was obtained 612 (57.2%) and 451(73.7) G1+G2 grade oocytes. No difference of recovered rate (51.1~62.1%) was seen in six donor. The rate of cleavage and blastocyst development were obtained 320 (70.9%) and 78 (24.4%) that was 3.3±0.4 cleaved embryo and 0.9±0.2 blastocysts per session. Cleavage rate of OPU oocytes in No. 6 donor was 90.6%, significantly (P<0.05) higher than that in the other donors, However, blastocysts was similar (25.8~30.0%). In conclusion, limited numbers of OPU oocytes had competent development when cultured in SOF culture medium
PURPOSES: This study is to compare load transfer efficiency of key joint and dowel joint for airport concrete pavement. METHODS: As AC150/5320-6D of FAA’s [Advisory Circular] was changed into AC150/5320-6E, Key joint type of rigid pavement were excluded from Construction Joints.. LTE(Load Transfer Efficiency) of dowel joint and key joint were compared by times and seasons through pavement temperature measurement, ocular investigation and HWD measurement. RESULTS: For the joint performance grade of No. 2(The second) runway of airport, 12% of poor rate was observed in key joint and 2% of poor rate in dowel joint. Poor rate of key joint was increased to 17%, if only No. 3~No. 6 slabs, which are mostly loaded from the airplanes, were applied for the study. In apron area, LTE poor rate of key joint was high in winter, and LTE poor rate of dowel joint was at least above ‘Fair’ grade. In summer, ‘Fair’ for key joint, ‘Acceptable’ for dowel joint appeared. CONCLUSIONS : As results, dowel joint was superior than key joint for LTE. Deviations of seasons and times were smaller in dowel joint’s result. And LTE in winter was lower than LTE in summer.
핵이식(NT) 기술을 이용하여 여러 동물 종에서 성공적으로 복제산자가 보고되고 있지만, 아직까지 비효율적인 기술로 남아있다. 본 연구에서는 돼지 체세포 복제 생산 효율성을 증진시키기 위한 방안으로 수핵난자의 품질에 초점을 맞추어 Brilliant cresyl blue (BCB) 염색을 통하여 발육능이 우수한 미성숙 난자를 선발하고, 난자의 감수분열 재개에 관여하는 단백질 합성을 비특이적으로 억제하는 cycloheximide (CHXM)을 이용하여 돼지 난자의 감수분열 재개를 억제시켜 난자의 성숙 동기화를 유도하였다. 또한 핵초기화에 밀접한 영향을 주는 핵막붕괴(NEBD)와 조기염색체응축 (PCC)을 유도하는 MPF의 활성화를 높이기 위하여 단백질 phosphatase 억제제인 caffeine을 첨가하여 수핵난자의 품질을 향상시키고자 하였다. 실험 방법으로는 13 mM BCB 첨가된 배양액에 90분 동안 미성숙난자를 배양하여 BCB 용액의 착색 여부를 구분하여 선발하고, 5 ㎍/ml CHXM를 체외 성숙액에 첨가하여 난자성숙 동기화를 유도하였다. 또한 탈핵 후 탈핵난자를 caffeine을 처리하여 세포주기 관련 단백질의 활성화를 인위적으로 조절하여 체세포복제 수핵난자로 사용하였다. 실험 결과로서 BCB 염색 돼지 미성숙 난자를 대조구와 비교할 때 제2 감수분열 중기(MII)에 도달하는 체외성숙율과 단위발생란의 배반포기까지의 체외 발육율이 유의적으로 증가하는 것이 관찰되었다. 또한 미성숙 돼지 난자의 초기 성숙 (12∼16시간)에 CHXM를 처리하였더니 난자 감수분열 재개가 억제되어 GV기에 핵 성숙이 정지되어 동기화가 유도되었다. GV기에 세포주기 동기화된 난자들은 CHXM를 제거하였을 때 난자 성숙의 진행속도도 일치하는 것이 관찰되었다. 이런 결과는 가장 적합한 탈핵시기인 제1 감수분열 후/말기(AI/TI)에 난자들이 다수 분포하여 대조구에 비하여 높은 탈핵율 (87.9%)을 얻을 수 있었다 (P < 0.05). 덧붙여 5 mM의 caffeine을 돼지 난자에 12시간 처리하였을 때 난자 MPF의 활성화가 증가하는 것이 관찰되었지만 (P < 0.05), 10 mM caffeine 농도를 처리하였을 때 MPF의 활성화가 오히려 감소되어 단위발생란의 배반포기까지의 체외발육에도 악영향을 주는 것이 관찰되었다.
The study was conducted to investigate the comparison of pregnancy rate and transferable embryos produced by genetically superior Korean cows (Hanwoo) of livestock farms. Eighteen Hanwoo donors were superovulated with gonadotropin for 4 days combined with Progesterone Releasing Intravaginal. Embryos were recovered 7 days after the second insemination by flushing the uterus with embryo collection medium. No differences were observed in the efficiency of rate of superovulation in groups A (low nutrition) and B (highnutrition) it was observed to be 100.0% and 87.5%, respectively. The mean numbers of total embryos were 10.8±3.4 and 8.9±2.5, and transferable embryos were 7.5±3.3 and 4.0±1.5 in groups A and B, respectively. The pregnancy rates after embryo transfer were 23.5%, 20.0%, C 80.0% and 55.6% in farm A, B, C, and D, respectively. In conclusion, results suggest that superovulation could be used quite effectively to raise superior Hanwooembryos. However, physical and biological condition of recipients greatly affects the rate of pregnancy.
A study was conducted to investigate the efficiency of recipient for Embryo Transfer (ET) in Holstein Heifers. A total of 193 heifers (Age 14-20 months and body weight, 250-400 Kg) was assigned in 2 groups (natural ovulation cycle group and Hormone-induced ovulation synchronization group) based on the development of corpus luteum (CL) and uterus where 28.49% (55/193) heifers were in normal estrous. The ET technique was applied in both of the groups to transfer the embryo in the recipients and evaluated their efficiency. In vivo frozen embryos were used for ET at the blastocyst stage. Results showed that according to recipient preparation method the conception rates were 22.72% (10/44) and 40.26% (60/149) in hormone-induced ovulation synchronization group and natural ovulation cycle group, respectively. The pregnancy rate of heifers was significantly higher (p<0.05) during the first time ET compared to repeat ET; however, recipient showed no significant difference in CL development in both side. The conception rate were 31.03% (9/29), 37.75% (57/151) and 15.38% (2/13) at day 6, 7 and 8, respectively after the CL development of the heifers. The conception rate was significantly higher (p<0.05) in the right side compared to left side of the CL development. In addition, during ET anesthesia group and non anesthesia group conception rate of the recipient were 27.63% (21/76) and 41.88% (49/117), respectively.
Subterranean termiteslive in the soil and wood that is in contact with soil. They have to discover food by constructing underground tunnel networks. Once the food is discovered and connected to the galleries, one important aspect of the foraging behavior is the food transfer by individual termites moving within the existing tunnels that lead to multiple existing food sources. In order to reveal how much the tunnel network is reliable to the food transfer efficiency, we used a lattice model suggested by Lee et al. (2006), which is capable of simulating the tunnel networks of Coptotermes formosanus and Riparius flavipes. After constructing the simulated tunnel networks, we randomly distributed food particles on the tunnel networks and then computed path entropy for the networksby selecting and evaluating the shortest paths from encountered food particles to the nest. The path entropy measured the degree of reliability of the networks for the food transfer entropy. Simulation results showed that path entropy between the simulated networks of C. formosanus and R. flavipes was significantly different due to the combinational effects of the network components such as the number of primary tunnels and the branching probability. We discussed the meaning of the results in relation to termite foraging efficiency.
Since the birth of Dolly using fully differentiated somatic cells as a nuclear donor, viable clones were generated successfully in many mammalian species. These achievements in animal cloning demonstrate developmental potential of terminally differentiated somatic cells. At the same time, the somatic cell nuclear transfer (SCNT) technique provides the opportunities to study basic and applied biosciences. However, the efficiency generating viable offsprings by SCNT remains extremely low. There are several explanations why cloned embryos cannot fully develop into viable animals and what factors affect developmental potency of reconstructed embryos by the SCNT technique. The most critical and persuasive explanation for inefficiency in SCNT cloning is incomplete genomic reprogramming, such as DNA methylation and histone modification. Numerous studies on genomic reprogramming demonstrated that incorrect DNA methylation and aberrant epigenetic reprogramming are considerably correlated with abnormal development of SCNT cloned embryos even though its mechanism is not fully understood. The SCNT technique is useful in cloning farm animals because pluripotent stem cells are not established in farm animal species. Therapeutic cloning combined with genetic manipulation will help to control various human diseases. Also, the SCNT technique provides a chance to overcome excessive demand for the organs by production of transgenic animals as xenotransplantation resources. Here, we describe the factors affecting the efficiency of generating cloned farm animals by the SCNT technique and discuss future directions of animal cloning by SCNT to improve the cloning efficiency.
This study measured technology transfer efficiency for public institutes. The study made use of DEA being one of the non-parametric linear programming to evaluate technology transfer efficiency for public institutes and to measure technology efficiency,
This study measured technology transfer efficiency for public institutes. The study made use of DEA being one of non-parametric linear programming to evaluate technology transfer efficiency for public institutes and to measure technology efficiency, pure technical efficiency and scale efficiency. The measurement of technology transfer efficiency for public institutes are as follows: The cause of the technology transfer inefficiency was affected by pure technical inefficiency more than by scale inefficiency.
The returns effect of scale varied depending upon characteristics of institutes: The characteristics of organization were not significant different but regional characteristics were significant different. The returns effect varied depending upon regional characteristics of public institutes: The organizations at the metropolitan area had decreasing returns to scale, while the ones at local areas had not only increasing returns to scale but also constant returns to scale.
The technology transfer efficiency of public institutes varied depending upon the features of the organizations and regions: The technology transfer efficiency of public institutes was as follow : public research institutes at the metropolitan area, public research institutes at the local areas, universities at the metropolitan area and universities at the local areas. In other words, the technology transfer efficiency was affected by organizational characteristics more than by regional characteristics at the place where public institutes were located.
Our goal was to examine the effects of early denudation on the enucleation efficiency and developmental competence of embryos following somatic cell nuclear transfer (SCNT) and parthenogenetic activation (PA). Oocytes were denuded following 30 h of in vitro maturation (IVM) and then cultured with (D+) or without (D-) their detached cumulus cells for additional h. Control oocytes were denuded after h of IVM. The size of the perivitelline space was larger at 40 h of IVM () than at 30 h ( p<0.01). The distances between the metaphase II (M II) plates and the polar bodies (PBs) were shorter in D+ () and D- oocytes () than in control oocytes ( p<0.01). Enucleation rates following blind aspiration at 40 h of IVM were higher (p<0.01) in D+ (92%) and D- oocytes (93%) compared to controls (82%). Early denudation did not affect oocyte maturation or the in vitro development of SCNT and PA embryos. When SCNT embryos from D+ oocytes were transferred to four gilts, pregnancy was established in two pigs, and one of them farrowed three live piglets. In conclusion, early denudation of oocytes at 30 h of IVM could improve the enucleation efficiency by maintaining the M II plate and the PB within close proximity and support the in vivo development of SCNT embryos to term.
본 논문에서는 철골 각형강관단면(RHS) 기둥-보 접합부에서 웨브의 모멘트 전달효율을 평가하였다. 먼저, 5개의 철골보접합부에 대한 비선형 유한요소해석을 수행하였다. 이들은 접합부 상세가 다르게 설계되었고, 따라서 휨저항 성능이 각기 다르다. 해석결과 RHS 기둥을 가진 모델은 기둥 플랜지의 면외변형 때문에 WF(Wide Flange) 기둥을 가진 모델에 비해 모멘트 전달효율이 저하함을 보였다. 스캘럽(WAH)과 얇은 강관기둥 두께도 모멘트 전달효율의 저하를 가져오는 원인으로서, 결과적으로 보-기둥 접합부의 파단을 초래할 가능성이 크다. 해석과 이전의 실험결과를 기초로 하면, 응력집중은 모멘트 전달효율과 반비례하고, 접합부의 변형능력은 모멘트 전달효율의 저하에 따라 감소하는 것을 알 수 있다. 더 나아가서 바닥슬래브가 있는 합성보 접합부에 대한 유한요소해석결과는 중립축이 상부플랜지 방향으로 상승함으로써 모멘트 전달효율이 저하했고, 이러한 영향은 접합부의 조기 취성파단을 초래하는 것을 보였다.
도축장에서 회수한 한우 난소로부터 난자를 회수하기 위한 방법으로 흡입법 후 세절법과 흡입법으로 난자를 회수하여, 난자의 회수율과 채란된 난자를 체외수정 후 발달율과 수정란 이식 후 수태율에 영향을 조사한 결과는 다음과 같다. 1. 난자 회수율은 각 난소당 회수된 난자수는 흡입 후 세절법이 8.2개, 흡입법이 6.5개로서 흡입 후 세절법을 병용하는 것이 난자 회수율에서 유의적으로 많았다. 2. 채란방법에 따른 체외수정란의 분할율은 흡입 후 세절법이 , 흡
콘크리트포장의 구조적 능력을 평가하는 가장 중요한 요소 중의 하나는 하중전달효과이다. 하중전달효과는 슬래브 상 하부 온도차, 다우월바 시공여부, 포장 노후도, 그리고 균열틈 등에 영향을 받는다. 본 연구의 목적은 콘크리트 포장의 하중전달효과 특성을 파악하고 하중전달효과에 영향을 주는 요소를 정량화하고 적절한 하중전달효과 조사방법을 제시하는 것이다. 연구결과 하중전달효과는 슬래브 표면온도가 아닌 슬래브 평균온도 영향을 받는 것으로 나타났다. 하중전달효과는 온도가 내려가고 균열틈이 벌어질수록 감소하는 것으로 나타났다. 다우월바를 시공한 구간의 경우 온도변화에 따라 하중전달효과는 큰 차이를 보이지 않은 반면, 다우월바를 시공하지 않은 구간에서는 온도가 내려갈수록 하중전달효과는 급격히 감소하였다. 다우월바를 시공한 구간이라도 포장이 노후화되면 하중전달효과는 온도가 하락함에 따라 감소하는 것으로 나타났다. 본 조사대상 구간에서는 슬래브 단위온도 하락시 하중전달효과는 1.4% 감소하는 것으로 나타났다.