PURPOSES : Korea Expressway Corporation has been working on an early remodeling project for the Jungbu Expressway to prepare methods for the rehabilitation of the old CRCP(Continuous Reinforced Concrete Pavement). In this study, the distress of the old CRCP was classified, and the engineering properties of the core specimens for each failure type were evaluated. Based on the test results, the concrete conditions of the existing CRCP were evaluated. This provides a basis for the pre-treatment or repair of the existing CRCP in the JungBu Expressway.
METHODS : To evaluate the pavement condition of the Jungbu Expressway, existing PMS(Pavement Management System) data were analyzed, and field surveys were conducted for each pavement condition. The longitudinal rebar depth, rebar spacing, horizontal crack, and pavement thickness were examined through core sampling and non-destructive testing. In addition, the core specimens were used to evaluate the compressive strength, chloride penetration test, chloride ion penetration resistance, and freeze-thaw resistance.
RESULTS : From the analysis of existing PMS data, field surveys, and laboratory tests, it was found that the old CRCP condition of the Jungbu Expressway was not good. Various types of failures occurred, and horizontal cracks at the rebar location, upward rebar locations, and rebar corrosion were confirmed. In addition, the compressive strength was considerably high, but the durability-related index was judged to be poor.
CONCLUSIONS : For the remodeling project of the Jungbu Expressway, appropriate repairs should be carried out for each type of distress in the old CRCP.
감자뿔나방은 감자에 대한 검역 해충으로 알려져 있다. 본 연구는 전자빔 조사가 감자뿔나방의 발육 및 생식, 그리고 DNA 손상에 미치는 영향을 비교하고 억제선량을 조사하였다. 전자빔을 알(0-12시간 이내), 유충(3령과 5령), 번데기(용화 1일 이내), 그리고 성충(우화 1일 이내)에 선량을 증가시키면서 조사하였다. 전자빔 150 Gy는 알의 부화와 부화된 유충의 용화를 완전히 억제하였다. 조사된 알의 부화율은 19.3%였지만, 성충 우화는 완전히 억제되었다. 3령과 5령 유충에 100 Gy를 조사하였을 때, 성충의 우화와 생식은 완전히 억제되었다. 번데기와 성충에 각각 300 Gy와 400 Gy를 조사하였을 때, F1세대의 부화율이 억제되었다. 전자빔에 대한 감자뿔나방 성충의 DNA 손상 정도를 alkaline comet assay으로 분석하였으며, 전자빔 조사가 선량 의존적으로 감자뿔나방의 DNA 손상 정도를 증가시켰다. 이러한 결과는 감자뿔나방에 대한 식물 검역 처리법으로 전자빔 150 Gy를 권장할 수 있다. 하지만, 감자뿔나방을 방제하기 위해 전자빔을 현장에 적용하기 위해서는 추가적인 연구가 필요할 것으로 사료된다.
The most important factor in the processing of composite materials is the creation of burrs. In order to minimize the generation of burrs, the preceding researchers changed the shape and processing conditions of the tool. The developed composite material using carbon and aramid fibers has limitations in reducing the formation of burrs. In this study, in order to solve this problem, by applying a jig under the test piece during drilling, it was possible to perform high-quality hole processing with minimal burr generation.
We use vdW-corrected density functional theory (DFT) calculations with additional electron distribution correction to study the water binding chemistry of an Au nanoparticle supported on CeO2(111) with a linear step-edge. The initial structural model of Au/CeO2 used for DFT calculations is constructed by stabilizing a Au9 nanoparticle at the linear step-edge on a CeO2(111) slab. The calculated binding energy of a water molecule clearly shows that the interfacial site between Au and CeO2 binds water more strongly than the binding sites at the surface of Au nanoparticle. Subsequent water dissociation calculation result shows that the interface-bound water can be relatively easily dissociated into–OH and –H, providing a hydroxyl group that can be utilized as an oxygen source for CO oxidation. Based on the low dissociation energy of the interface bound water molecule, we suggest that the water at the Au-CeO2 interface can facilitate further oxidation of Au-bound CO. Our results point out that Au-CeO2 interface-bound water is beneficial for low-temperature oxidation reactions such as the water-gas shift reaction or preferential CO oxidation reaction.
최근 기후변화 및 국제교역량, 여행객, 외국 이주민 등의 증가로 국내 농작물에 큰 피해를 입힐 수 있는 고위험 식물 병의 국내 유입이 꾸준히 증가하고 있고 이에 따라, 검역기관 종사자들의 업무량도 늘어나고 있다. 특히 ‘Candidatus Liberibacter solanacearum’가 원인병원균인 감자 제브라칩병의 경우, 발생하게 되면 감자를 초토화시켜 막대한 피해를 야기한다. ‘Ca. L. solanacearum’의 감자와 토마토 등의 가지과(Solanaceae) 작물과 당근을 포함하는 산형과(Umbelliferae) 작물이 기주가 될 수 있다. 이에 본 연구에서는 아직까지 국내에 유입되지 않은 감자 제브라칩병과 매개충인 토마토 감자 나무이(tomato potato psyllid; TPP; Bactericera cockerelli Sulc.)에 대한 예찰 조사를 수행하였다. 예찰 조사를 위해 전국을 7개 권역(경기-강원, 충청, 전북, 전남, 경북, 경남 및 제주)으로 나누고, 각 권역에 속하는 3개 지역 중심으로 수행하였는데, 경기-강원 권역은 인천, 화성, 춘천 및 홍천, 충청 권역은 공주, 세종 및 청주, 전북 권역은 익산, 완주 및 정읍, 전남 권역은 보성, 고흥 및 순천, 경북 권역은 상주, 김천 및 안동, 경남 권역은 거창, 함양 및 진주, 제주 권역은 구좌 및 성산 지역이 해당되며, 지역당 3개 지점을 두고 조사하였다. 매개충 TPP 조사를 위해 끈끈이 트랩을 이용한 조사를 병행하였다. 예찰 조사는 2018년 9월부터 10월까지 2주 간격으로 실시하였다. 2018년 예찰 조사결과, 감자 제브라칩병과 매개충인 TPP는 국내에는 확인되지 않았다. 이 연구는 식물병을 조기에 탐지하기 위해 구축된 전국적인 모니터링 네트워크를 통해 수행할 수 있었고, 국외 외래유입병들의 예찰 조사를 위한 지역 거점을 확보하는데 기여하였다고 평가된다.
This study was conducted to investigate the effect of the power ranking of mares on their offspring’s stereotypies and response behaviors against a restraining of their desire to eat. Nine horses (2-4 years old) - three offspring born from three Haflinger mares over 3 years - were assigned to three experimental groups (High, Middle, Low) divided by the power ranking of mares. Three mares had no oral or locomotor stereotypic behaviors, but the higher the power ranking of mares, the more diverse and longer the duration of the oral stereotypies of their offspring (p<0.05). Although the offspring born from the high-ranking mare vigorously continued oral stereotypies until 3-4 years of age, there were no individuals that progressed to chronic locomotor stereotypies such as crib-biting, weaving, and box-walking. With an increase in the power ranking of the mare, the response of her offspring to the restraining of the eating desire (measured in terms of the frequency of the oral and locomotor stereotypies) increased (p<0.05). In conclusion, the oral stereotypies shown in this study are characteristic behaviors that occur during the growth process. However, in the case of riding horses, the offspring of a high-power ranking mare and/or one that reacted excessively against restrains, may be better observed and treated in a stall to manage stereotypic behaviors and correct the behaviors at their initial stage.
Electrochromic devices (ECDs) have been drawing great attention due to their high color contrast, low power consumption, and memory effect, and can be used in smart windows, automatic dimming mirrors, and information display devices. As with other electronic devices such as LEDs (light emitting diodes), solar cells, and transistors, the mechanical flexibility of ECDs is one of the most important issue for their potential applications. In this paper, we report on flexible ECDs (f-ECDs) fabricated using an all-in-one EC gel, which is a mixture of electrolyte and EC material. The f-ECDs are compared with rigid ECDs (r-ECDs) on ITO glass substrate in terms of color contrast, coloration efficiency, and switching speed. It is confirmed that the f-ECDs embedding all-in-one gel show strong blue absorption and have competitive EC performance. Repetitive bending tests show a degradation of electrochromic performance, which must be improved using an optimized device fabrication process.
This study aimed to investigate the characteristics of odor-causing substances in Yeosu national industrial complex, which is designated as an “Odor management Area,” in 2019 and the surrounding area. The sampling sites were divided into three areas: five sites within the industrial complex (Management area), one site within the borders of the complex (Boundary area), and two sites within residential areas (Affected area) affected by odors. The odor compounds were collected from March to September at dawn, daytime, and night. The analytical items were meteorological data, complex odor, legally-designated 22 odor compounds and other VOCs. Complex odor was exceeded on the limit three occasions at two sites in the management area. Ammonia, two types of sulfides, three types of aldehydes, and five VOCs were detected to be within the emission standards. Ammonia was the most frequently detected compounds. Aldehydes and sulfur compounds made a relatively high contribution to the level of odors. Therefore, aldehydes and sulfur compounds should be reduced first in order to prevent odors from occurring.
In this paper, the dynamic response was analyzed by performing linear dynamic analysis using historic earthquake loads on twisted-shaped structures and fixed structure among free-form high-rise structures with atypical elevation shape following prior studies. In addition, the dynamic characteristics of the analysis models according to the plane rotation angle of the twisted structure were compared and analyzed. As a result of the analysis, as the plane rotation angle of the twisted structure increased, the interlayer deformation rate increased in the high-rise part of 50th floors or more. The story shear force and the story absolute acceleration were similar in the entire structure. In the case of the story shear force, the response of the twisted shape model was rather reduced in the middle part. As a result of analyzing the dynamic response, the vulnerable layer where the response amplification of the twisted structure occurs was found to be 31st story.
Control performance of a smart tuned mass damper (TMD) mainly depends on control algorithms. A lot of control strategies have been proposed for semi-active control devices. Recently, machine learning begins to be applied to development of vibration control algorithm. In this study, a reinforcement learning among machine learning techniques was employed to develop a semi-active control algorithm for a smart TMD. The smart TMD was composed of magnetorheological damper in this study. For this purpose, an 11-story building structure with a smart TMD was selected to construct a reinforcement learning environment. A time history analysis of the example structure subject to earthquake excitation was conducted in the reinforcement learning procedure. Deep Q-network (DQN) among various reinforcement learning algorithms was used to make a learning agent. The command voltage sent to the MR damper is determined by the action produced by the DQN. Parametric studies on hyper-parameters of DQN were performed by numerical simulations. After appropriate training iteration of the DQN model with proper hyper-parameters, the DQN model for control of seismic responses of the example structure with smart TMD was developed. The developed DQN model can effectively control smart TMD to reduce seismic responses of the example structure.