검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 71

        21.
        2008.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Al-Cu alloy nano powders have been produced by the electrical explosion of Cu-plated Al wire. The porous nano particles were prepared by leaching for Al-Cu alloy nano powders in 40wt% NaOH aqueous solution. The surface area of leached powder for 5 hours was 4 times larger than that of original alloy nano powder. It is demonstrated that porous nano particles could be obtained by selective leaching of alloy nano powder. It is expected that porous Cu nano powders can be applied for catalyst of SRM (steam reforming methanol).
        4,000원
        22.
        2008.01 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Carbon nanotube (CNT) cathodes were fabricated using nano-sized silver (Ag) powders as a bonding material between the CNTs and cathode electrodes. The effects of the powder size on the sintering behavior, the current density and emission image for CNT cathodes were investigated. As the diameter of the Ag powders decreases to 10 nm, the sintering temperature of the CNT cathode was lowered primarily due to the higher specific surface area of the Ag powders. In this study, it was demonstrated that nano-sized Ag powders can be feasibly used as a bonding material for a screen-printed CNT cathode, yielding a high current density and a uniform emission image.
        4,000원
        23.
        2007.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Hydroxyapatite (HAp) and biphasic calcium phosphate (BCP) nano powders were synthesized using the microwave-assisted synthesis process dependent on pH and microwave irradiation time. The average size of a powder was less than 100 nm in diameter. Through in-vitro cytotoxicity tests by an extract dilution method, the HAp and BCP nano powders have shown to be cytocompatible for L-929 fibroblast cells, osteoblastlike MG-63 cells and osteoclast-like Raw 264.7 cells. The activation of osteoblast was estimated by alkaline phosphatase (ALP) activity. When the HAp and BCP were treated to MG-63 cells, alkaline phosphatase activities increased on day 3, compared with those of the untreated cells. Also, the collagen fibers increased when the HAp and BCP powders suspension were treated to MG-63 cells, compared to those of the untreated cells. Quantitative alizarin red S mineralization assays showed a trend toward increasing mineralization in osteoblast cultured with powder suspension. In conclusion, hydroxyapatite and biphasic calcium phosphate appeared to be a bone graft substitute material with optimal biocompatibility and could be further applied to clinical use as an artificial bone graft substitute.
        4,000원
        24.
        2007.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Oxidation behavior and microstructural characteristics of nano-sized Sn powder were studied. DTA-TG analysis showed that the Sn powder exhibited an endothermic peak at and exothermic peak at with an increase in weight. Based on the phase diagram consideration of Sn-O system and XRD analysis, it was interpreted that the first peak was for the melting of Sn powder and the second peak resulted from the formation of phase. Microstructural observation revealed that the powder, heated to under air atmosphere, consisted of agglomerates with large particle size due to the melting of Sn powder during heat treatment. Finally, fine SnO2 powders with an average size of 50nm can be fabricated by controlled heat treatment and ultrasonic milling process
        4,000원
        25.
        2007.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Nanocrystalline transient aluminas (-alumina) were coated on core particles (-alumina) by a carbonate precipitation and thermal-assisted combustion, which is environmentally friend. The ammonium aluminum carbonate hydroxide (AACH) as a precursor for coating of transient aluminas was produced from precipitation reaction of ammonium aluminum sulfate and ammonium hydrogen carbonate. The crystalline size and morphology of the synthetic, AACH, were greatly dependent on pH and temperature. AACH with a size of 5 nm was coated on the core alumina particle at pH 9. whereas rod shape and large agglomerates were coated at pH 8 and 11, respectively. The AACH was tightly bonded coated on the core particle due to formation of surface complexes by the adsorption of carbonates, hydroxyl and ammonia groups on the surface of the core alumina powder. The synthetic precursor successfully converted to amorphous- and -alumina phase at low temperature through decomposition of surface complexes and thermal-assisted phase transformation.
        4,000원
        26.
        2007.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Cu-Ni-P alloy nano powders were fabricated by the electrical explosion of electroless Ni plated Cu wires. The effect of applied voltage on the explosion was examined by applying pulse voltage of 6 and 28 kV, The estimated overheating factor, K, were 1.3 for 6 kV and 2.2 for 28 kV. The powders produced with pulse voltage of 6 kV were composed of Cu-rich solid solution, Ni-rich solid solution, and phase. While, those produced with 28 kV were complete Cu-Ni-P solid solution and small amount of phase. The initial P content of 6.5 at.% was reduced to 2-3 at.% during explosion due to its high vapour pressure.
        4,000원
        27.
        2007.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Getter property of nano-sized metallic powders was evaluated as a possible candidate for the future getter material. For the purpose, Ti powders of about 50 nm were prepared by electrical wire explosion. Commercial Ti powders of about 22 micrometer were tested as well for comparison. The room-temperature hydrogen-sorption speed of nano-sized Ti powders was which was more than 4 times higher than that of micron-sized ones. The value is comparable to or even higher than those of commercial products. Its sorption speed increases with activation temperature up to above which it deteriorates due to low-temperature sintering effect of nano-sized particles.
        4,000원
        28.
        2007.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Cu-Zn alloy nano powders were fabricated by the electrical explosion of Zn-electroplated Cu wire along with commercial brass wire. The powders exploded from brass wire were composed mainly of phases while those from electroplated wires contained additional Zn-rich phases as , and Zn. In case of Zn-elec-troplated Cu wire, the mixing time of the two components during explosion might not be long enough to solidify as the phases of lower Zn content. This along with the high vapor pressure of Zn appears to be the reason for the observed shift of explosion products towards the high-Zn phases in electroplated wire system.
        4,000원
        29.
        2006.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Al-Cu alloy nano powders were produced by the electrical explosion of Cu-plated Al wires. The composition and phase of the alloy could be controlled by varying the thickness of Cu deposit on Al wire. When the Cu layer was thin, Al solid solution and were the major phases. As the Cu layer becomes thicker, Al diminished while phase prevailed instead. The average particle size of Al-Cu nano powders became slightly smaller from 63 nm to 44 nm as Cu layer becomes thicker. The oxygen content of Al-Cu powder decreased linearly with Cu content. It is well demonstrated that the electrodeposition combined with wire explosion could be simple and economical means to prepare variety of alloy and intermetallic nano powders.
        4,000원
        30.
        2006.04 구독 인증기관·개인회원 무료
        Monodispersed and nano-sized Cu powders were synthesized from copper sulfate pentahydrate inside a nonionic polymer matrix by using wet chemical reduction process. The sucrose was used as a nonionic polymer network source. The influences of a nonionic polymer matrix on the particle size of the prepared Cu powders were characterized by means of X-ray diffraction), scanning electron microscopy), and particle size analysis). The smallen Cu powders with size of approximately 100 nm was obtained with adding of 0.04M sucrose at reaction temperature of . The particle size of the Cu powders prepared by the reduction inside polymer network was strongly dependent of the sucrose content and reaction temperature.
        31.
        2006.04 구독 인증기관·개인회원 무료
        Monodispersed and nano-sized Ni powders were synthesized from aqueous nickel sulfate hexahydrate inside nonionic polymer network by using wet chemical reduction process. The sucrose was used as a nonionic polymer network source. The effect of reaction conditions such as the amount of sucrose and a various reaction temperature, nickel sulfate hexahydrate molarity. The influence of a nonionic polymer network on the particle size of the prepared Ni powders was characterized by means of X-ray diffraction (XRD), scanning electron microscopy (SEM), and particle size analysis (PSA). The results showed that the obtained Ni powders were strong by dependent of the reaction conditions. In particular, the Ni powders prepared inside a nonionic polymer network had smooth spherical shape and narrow particle size distribution.
        32.
        2006.04 구독 인증기관·개인회원 무료
        Several titanate powders (, etc.) were synthesized by an ethylene glycol solution route. Titanium isopropoxide and nitrate salts were dissolved in stoichiometric proportions in liquid-type ethylene glycol without any precipitation. The parent precursor sols were dried to porous gels, and then the gels were calcined and crystallized. All synthesized titanate powders had stable crystallization behavior at low temperature and high specific surface area after a simple ball-milling process. A three-component PZT powder was also synthesized successfully by the ethylene glycol method. In this study, the characteristics of the multi-component titanate powders by the ethylene glycol method are examined.
        33.
        2006.04 구독 인증기관·개인회원 무료
        A new process of pulsed electric current sintering was developed. It combines compaction with activated sintering effectively and can manufacture bulky nano-crystalline materials very quickly. A nano-structured steel is obtained with high relative density and hardness by this process. The average grain size of iron matrix is 58nm and the carbide particulate size is less than 100 nm. The densification temperature of ball-milled powders is approximately lower than that of blended powders. When the sintering temperature increases, the density of as-sintered specimen increases but the hardness of as-sintered specimen first increases and then decreases.
        34.
        2006.04 구독 인증기관·개인회원 무료
        This study aims to investigate the usage of nano-scale particles in a micro metal injection molding (-MIM) process. Nanoscale particle is effective to improve transcription and surface roughness in small structure. Moreover, the effects of hybrid micro/nano particles, Cu/Cu and SUS/Cu were investigated. Small dumbbell specimens were produced using various feedstocks prepared by changing binder content and fraction of nano-scale Cu particle (0.3 and in particle size). The effects of adding the fraction of nano-scale Cu powder on the melt viscosity of the feedstock, microstructure, density and tensile strength of sintered parts were discussed.
        35.
        2006.04 구독 인증기관·개인회원 무료
        Processing and properties of high power piezoelectric transformer (PT) fabricated by PIM with nano-sized piezoelectric powders are demonstrated. The high power characteristics of a PMed dome-shaped PT were examined by the lighting test for a 55watt PL lamp. The 55watt PL lamp was successfully driven by the PIMed PT with sustaining efficiency higher than 98%. The transformer with ring/dot area ratio of 2.1 exhibited the maximum properties in terms of output power, efficiency and temperature stability.
        39.
        2005.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        A formation of aluminum hydroxide by hydrolysis of nano and micro aluminum powder has been studied. The nano aluminum powder of 80 to 100 nm in diameter was fabricated by a pulsed wire evaporation (PWE) method. The micro powder was commercial product with more than in diameter. The hydroxide type and morphology depending on size of the aluminum powder were examined by several analyses such as XRD, TEM, and BET. The hydrolysis procedure of micro aluminum powder was different from that of nano aluminum powder. The nano aluminum powder after immersing in the water was transformed rapidly to a nano fibrous boehmite, accompanying with a remarkable temperature increase, and then further transformed slowly to a stable bayerite. However, the micro powder was changed to the stable bayerite slowly and directly. The formation of fibrous aluminum hydroxide from nano aluminum powder might be due to the fine cracks which were formed by hydrogen gas pressure on the surface hydroxide layer during hydrolysis. The nano powder with large specific surface area and small size reacted more actively and faster than the micro powder, and transformed to meta-stable hydroxide in relatively short reaction time. Therefore, the formation of fibrous boehmite is special characteristic of hydrolysis of nano aluminum powder.
        4,000원
        1 2 3 4