검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 1,828

        802.
        2008.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        On the base of experience in development of Magnetic Powder Composites, and particularly Soft Magnetic Composites, authors are trying to systematize classification and indicate possible development prospective of Magnetic Nanocomposites (MN) technology and their applications in electrical converters. Clear classification and systematization, at an early stage of any materials and technology development, are essential and lead for better understanding and communication between researchers and industry involved. This concern MN as well and it seems to be the right time to make it at present stage of their development. Presented proposal of classification distinguishes various types of MN by their magnetic properties and area of possible applications. It is not a close set of types, and can be extended due to increase of knowledge concern these nanocomposites.
        4,200원
        803.
        2008.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        doped (GDC) solid solutions have been considered as a promising materials for electrolytes in intermediate-temperature solid oxide fuel cells. In this study, the nano-sized GDC powder with average panicle size of 69nm was prepared by a high energy ball milling process and its sintering behavior was investigated. Heat-treatment at of nano-sized GDC powder mixture led to GDC solid-solution. The enhanced densification over 96% of relative density was obtained after sintering at for 2h. It was found that the sinterability of GDC powder could be significantly improved by the introduction of a high energy ball milling process
        4,000원
        804.
        2008.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The electromagnetic (EM) wave absorption properties of the nanocrystalline powder mixed with 5 to 20 vol% of Ni-Zn ferrites has been investigated in a frequency range from 100MHz to 10GHz. Amorphous ribbons prepared by a planar flow casting process were pulverized and milled after annealing at 425 for 1 hour. The powder was mixed with a ferrite powder at various volume ratios to tape-cast into a 1.0mm thick sheet. Results showed that the EM wave absorption sheet with Ni-Zn ferrite powder reduced complex permittivity due to low dielectric constant of ferrite compared with nanocrystalline powder, while that with 5 vol% of ferrite showed relatively higher imaginary part of permeability. The sheet mixed with 5 vol% ferrite powder showed the best electromagnetic wave absorption properties at high frequency ranges, which resulted from the increased imaginary part of permeability due to reduced eddy current.
        4,000원
        806.
        2008.06 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        High-energy mechanical milling (HEMM) and sintering into Al-Mg alloy melt were employed tofabricate an Al alloy matrix composite reinforced with submicron and micron sized Al2O3 particles. Al-basedmetal matrix composite (MMC) reinforced with submicron and micron sized Al2O3 particles was successfullyfabricated by sintering at 1000oC for 2h into Al-Mg alloy melt, which used high energy mechanical milled Al-SiO2-CuO-ZnO composite powders. Submicron/micron-sized Al2O3 particles and eutectic Si were formed by in situdisplacement reaction between Al, SiO2, CuO, and ZnO during sintering for 2h into Al-Mg alloy melt and werehomogeneously distributed in the Al-Si-(Zn, Cu) matrix. The refined grains and homogeneously distributedsubmicron/micron-sized Al2O3 particles had good interfacial adhesive, which gives good wear resistance withhigher hardness.
        4,000원
        807.
        2008.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Aluminum alloys are not only lightweight materials, but also have excellent thermal conductivity, electrical conductivity and workability, hence, they are widely used in industry. It is important to control and enhance the densification behavior of metal powders of aluminum. Investigation on the extrusion processing combined with equal channel angular pressing for densification of aluminum powders was performed in order to develop a continuous production process. The continuous processing achieved high effective strain and full relative density at . Optimum processing conditions were suggested for good mechanical properties. The results of this simulation helped to understand the distribution of relative density and effective strain.
        4,000원
        808.
        2008.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Carbon was known to be one of effective additives which can improve the flux pinning of at high magnetic fields. In this study, glycerin was selected as a chemical carbon source for the improvement of critical current density of . In order to replace some of boron atoms by carbon atoms, the boron powder was heat-treated with liquid glycerin. The glycerin-treated boron powder was mixed with an appropriate amount of magnesium powder to composition and the powder pallets were heat treated at for 30 min in a flowing argon gas. It was found that the superconducting transition temperature of prepared using glycerin-treated boron powder was 36.6 K, which is slightly smaller than (37.1 K) of undoped . The critical current density of was higher than that of undoped and the improvement effect was more remarkable at higher magnetic fields. The , decrease and increase associated with the glycerin treatment for boron powder was explained in terms of the carbon substitution to boron site.
        4,000원
        813.
        2008.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This purpose of this study was to develop a functional muffin by adding yam powder in the shape of a muffin as a partial surrogate for wheat flour. The yam has been found to be effective for liver and kidney function, as well as the digestion of protein, since it produces glucuronic acid in the body. Therefore, the purpose of this study was to determine the optimal mixing conditions of yam muffins by adjusting the amounts yam powder, butter, and sugar. The mixing conditions for the yam muffins included 3 categories: yam powder (X1), sugar (X2), and butter (X3) by Central Composite Design (CCD) which was optimized by Response Surface Methodology (RSM). The effects of the three variable additions on muffin quality were examined via physical and chemical experiments, such as the analysis of texture (hardness, cohesiveness, springiness, gumminess), coloration (lightness, redness, yellowness), and height. Lastly, we performed a sensory test, which revealed significant findings for gumminess, color, appearance, flavor, softness (p〈0.05), redness, and overall quality (p〈0.01). Consequently, the optimal mixing rate which best satisfied the sensory items were 34.35g of yam powder, 80.15 g of sugar, and 80.55 g of butter.
        4,000원
        814.
        2008.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, Astragalus membranaceus powder was added (3, 6, 9%) during yeast bread preparation and its effect on product quality was examined. The results showed that the dough pH increased as the Astragalus membranaceus powder content increased. However, dough volume during fermentation did not differ significantly among the samples. Bread volume decreased (p<0.001) with an increasing amount of Astragalus membranaceus powder. Also, as the Astragalus membranaceus powder content increased, the Hunter’s color ‘L’ value of the crust decreased and the ‘a’ value increased, and for the crumb, the ‘L’ value decreased and the ‘a’ value increased. Textural property analysis indicated that hardness increased with an increasing amount of Astragalus membranaceus powder. However, up to the 6% level, there were no sensory attribute differences among the samples.
        4,000원
        815.
        2008.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The mechanochemical process were employed to prepare the red phosphors (Y,Gd). The main factors affecting particle size, particle distribution, and luminescent properties of the product were investigated in details. Particles sized around 200-600 nm are formed after intensive milling. The phosphors were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM) and photoluminescence spectrum. Results revealed that phosphors with different morphology, small particle size and high luminescence intensity could be obtained by mechanochemical process
        4,000원
        816.
        2008.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Ultrafine TiC-5%Co powders were synthesized by spray drying of aqueous solution of TiO slurry and cobalt nitrate, followed by calcination and carbothermal reaction. The oxide powders with carbon powder was reduced and carburized at under hydrogen atmosphere. During reduction, CO gas was mainly evolved by reducing reaction of oxides. Ultrafine TiC-5%Co powders were easily formed by carbothermal reaction at due to using ultrafine powders as raw materials. The ultrafine WC-TiC-Co alloy prepared by sintering of mixed powder of ultrafine WC-13%Co powder and ultrafine TiC-5%Co powder has higher sintered density and mechanical properties than WC-TiC-Co alloy prepared by commercial WC, TiC and Co powders
        4,000원
        817.
        2008.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The investigation is to modify the mechanical and chemical properties of Mg alloys using a combination of rapid solidification and surface treatment. As the first approach, was gas atomized and pressure sintered by spark plasma sintering process (SPS), showing much finer microstructure and higher strength than the alloys as cast. Further modification was performed by treating the surface of PM Mg specimen using Plasma electrolytic oxidation (PEO) process. During the PEO processing, MgO layer was initiated to form on the surface of Mg powder compacts, and the thickness and the density of MgO layer were varied with the reaction time. The thickening rate became low with the reaction time due to the limited diffusion rate of Mg ions. The surface morphology, corrosion behavior and wear resistance were also discussed
        4,000원
        818.
        2008.03 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Evaluation of the solid surface properties by an analysis of the liquid penetration rate into powderbeds is very important in applications of powder products. The penetration rate is related the surface propertyin powder beds. In order to analyze the surface property of powders, the contact angle values of several powderswere obtained using the Washbun equation and the Wicking method. The surface free energy value γS wasdivided into a polar component γSp and a dispersion component γSd. Inorganic powders such as calcite were usedas test samples. The effects of the particle size and the type of experimental liquid on the penetration rate weremeasured. It was confirmed that the surface free energy of the grinding sample is smaller than that of theclassification sample.
        4,000원
        820.
        2008.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The amorphous (at%) alloy strip was pulverized using a jet mill and an attrition mill to get flake-shaped powder. The flake powder was mixed with dielectric powder and its dispersant to increase the permittivity. The powders covered with dielectric powders and its dispersant were mixed with a binder and a solvent and then tape-cast to form sheets. The absorbing properties of the sheets were measured to investigate the roles of the dielectric powder and its dispersant. The results showed that the addition of powders and its dispersant improved the absorbing properties of the sheets noticeably. The powder sheet mixed with 5 wt% of powder and 1 wt% of dispersant showed the best electromagnetic wave absorption rate because of the increase of the permittivity and the electrical resistance
        4,000원