기후변화 시나리오는 기후변화로 인한 미래 영향을 평가하여 피해를 선제적으로 최소화하기 위한 기후변화 대응 및 적응정책 수립을 위한 과학적인 근거로 활용 되어 왔다. IPCC 6차 평가보고서(AR6)에 사용된 SSPs(Shared Socioeconomic Pathways, 공통사회경제경로) 시나리오는 기존 RCP(Representative Concentration Pathways, 대표농도경로) 시나리오에 사용된 복사강제력 개념과 함께 미래의 완화 와 적응 노력에 따른 5개의 사회경제 시나리오를 추가로 고려하였다. 가나는 국가 발전용량의 54%를 수력발전에 의존하고 있어 기후변화에 따른 강수량의 감소로 전력 부족을 경험하고 있다. 또한 강우특성의 변화로 인해 주요 작물인 카사바, 옥수수, 코코아의 생산량이 감소할 것으로 예측된다. 한편, IPCC 6차 보고서의 기 준 시나리오로 채택된 SSPs 시나리오는 5차 보고서에서 채택된 RCPs 시나리오에 비해 대기 중 CO2 농도 전망을 비관적으로 평가하고 있다. Business as usual(BAU) 시나리오(RCP8.5, SSP5-8.5)에 따르면 2050년대 CO2 농도는 RCPs 시나 리오의 경우 541 ppm, SSPs 시나리오는 565 ppm으로 SSPs 시나리오가 RCPs 시나 리오에 비해 대기중 CO2 농도 증가 속도가 빠른 것으로 전망하고 있다. 따라서 본 연구에서는 기후변화 시나리오의 통계적 상세화 방법인 Simple Quantile Mapping(SQM)을 사용하여 Coupled Model Intercomparison Project phase 6(CMIP6) 18개 General Circulation Model(GCM)을 활용하여 가나지역의 미래기후 변동과 불 확실성을 평가하였다.
Global warming has a major impact on the Earth’s precipitation and temperature fluctuations, and significantly affects the habitats and biodiversity of many species. Although the number of alien plants newly introduced in South Korea has recently increased due to the increasing frequency of international exchanges and climate change, studies on how climate change affects the distribution of these alien plants are lacking. This study predicts changes in the distribution of suitable habitats according to RCPs climate change scenarios using the current distribution of the invasive alien plant Conyza sumatrensis and bioclimatic variables. C. sumatrensis has a limited distribution in the southern part of South Korea. Isothermality (bio03), the max temperature of the warmest month (bio05), and the mean temperature of the driest quarter (bio09) were found to influence the distribution of C. sumatrensis. In the future, the suitable habitat for C. sumatrensis is projected to increase under RCP 4.5 and RCP 8.5 climate change scenarios. Changes in the distribution of alien plants can have a significant impact on the survival of native plants and cause ecosystem disturbance. Therefore, studies on changing distribution of invasive species according to climate change scenarios can provide useful information required to plan conservation strategies and restoration plans for various ecosystems.
기후변화는 곤충의 성장, 발육, 생존, 생식력, 분포범위 등 생활사의 변수들에 영향을 준다. 특히 외래곤충의 경우 생태계 정착 및 확산이 빨라 지고 있으며, 생태계 교란, 토착종 감소 등 생물다양성을 감소시키는 직접적인 원인 중 하나이다. 알팔파바구미는 1990년대 제주도에서 처음 발견 후 남부지방에 대량 발생하여 농업해충으로 인식되었다. 최근 하면처로 이동하는 개체에 의한 밭작물의 피해와 여러 시군에서 서식이 확인되며 확산의 우려되고 있다. 본 연구에서는 기후변화가 알팔파바구미에 미치는 영향에 대해 파악하였다. 미래의 기후 시나리오 RCP 4.5와 RCP 8.5에서 알팔파바구미의 잠재적 분포를 추정하기 위해 MaxEnt 모델을 적용하였다. 모형의 변수는 2015~2017년까지 알팔파바구미의 서식이 확인된 66개 지점과 종의 생태특성 및 예측변수간 상관성을 고려한 6개(bio3, bio6, bio10, bio12, bio14, bio16)의 생물기후를 사용하였다. 예측된 모형의 적합 도는 평균 0.765로 잠재력이 의미 있는 값이며, 최고 따뜻한 분기의 평균기온(bio10)이 60~70%로 높은 기여도를 나타냈다. 2050년과 2070년의 시나리오(RCP 4.5, RCP 8.5)에 대한 모형의 결과는 한반도 전역에서 알팔파바구미의 분포 변화를 보여 주었으며, 기온상승에 따른 전국적 확산이 예측되었다.
Two climate change scenarios, the RCP (Representative Concentration Pathways) 4.5 and the RCP 8.5 in the fifth Assessment Report (AR5) by Intergovernmental Panel on Climate Change (IPCC), were applied in the Yocheon basin area using the SWAT (Soil and Water Assessment Tool) model to estimate changes in flow rates and pollutant loadings in the future. Field stream flow rate data in Songdong station and water quality data in Yocheon-1 station between 2013~2015 were used for model calibration. While R2 value of flow rate calibration was 0.85 and R2 value of water qualities were in the 0.12~0.43 range. The total study period was divided into 4 sub periods as 2030s (2016~2040), 2050s (2041~2070) and 2080s (2071~2100). The predicted results of flow rates and water quality concentrations were compared with results in calibrated periods, 2015s (2013~2015). In both RCP scenarios, flow rate and TSS (Total Suspended Solid) loadings were estimated to be in increasing trend while TN (Total Nitrogen) and TP (Total Phosphorus) loadings showed decreasing patterns. Also, flow rates and pollutant loadings showed larger differences between the maximum and the minimum values in RCP 4.5 than RCP 8.5 scenarios indicating more severe effect of drought and flood, respectively. Dependent on simulation period and rainfall periods in a year, flow rate, TSS, TN and TP showed different trends in each scenario. This emphasizes importance of considerations on time and space when analyzing climate change impacts of each variable under various scenarios.
This study was conducted to predict the changes of potential distribution for invasive alien plant, Amaranthus viridis in Korea. The habitats of A. viridis were roadside, bare ground, farm area, and pasture, where the interference by human was severe. We used maximum entropy modeling (MaxEnt) for analyzing the environmental influences on A. viridis distribution and projecting on two different representative concentration pathways (RCP) scenarios, RCP 4.5 and RCP 8.5. The results of our study indicated annual mean temperature, elevation and precipitation of coldest month had higher contribution for A. viridis potential distribution. Projected potential distribution of A. viridis will be increased by 110% on RCP 4.5, 470% on RCP 8.5.
The purpose of this study is to analyze the climate change exposure of fisheries and fish species in the southern sea of Korea under the RCP climate change scenarios. The extent of exposure was calculated through weighted sum of the sea temperature forecasted by National Institute of Fisheries Science, and the weight were obtained from the time-space distribution of each fisheries or species, based on the micro-data for the fishing information reported by each fisherman. Results show that all the exposed sea temperature of RCP8.5 is higher than that of RCP4.5 in year 2100 as well as in near 2030, therefore it is thought to be very important to reduce the GHG emission even in the short term. The extent of exposure was analyzed to be comparatively high especially in the fisheries such as anchovy drag nets and species like cod, anchovy and squid. Meanwhile the method of this study is considered to be excellent to obtain the accurate extent of exposure under RCP scenarios, and therefore it is applicable on assessing the vulnerability of climate change in fisheries.
기후변화에 따른 곤충의 발생과 피해 예측 등 영향평가를 위해서는 미래의 가능한 기후에 대한 합리적인 예상 정보(즉, 기후변화 시나리오)와 함께 여러 환경조건에서 곤충의 발생, 생태 등을 사전에 예측할 수 있는 도구(즉, 곤충 모델)가 필수적이다. 그 중 곤충 모델링에 관한 연구는 연구 대상인 곤충 자체에 대해 잘 파악하고 있는 곤충학 분야에서 개발되어야 할 것으로 판단되나, 모델을 구동하기 위한 기본적인 입력 요소인 환경자료(기후, 작물, 토양 등)에 대한 것은 관련된 분야에서 연구되는 것이 필요하다. 하지만 이러한 연구는 서로 정보를 공유하면서 진행되는 것이 바람직할 것이다. 특히, 모델의 입력 요소(독립변수)에 대한 시간과 공간 규모를 공유하는 것이 중요하다. 예를 들면, 작물 생육모델의 경우에는 시간적으로는 일 단위, 공간적으로는 농장 단위 정도의 규모이면 우리나라에서 적용하는데 큰 문제가 없지만, 이동성이 높은 곤충의 경우에는 시간적으로는 시간단위, 공간적으로는 서식처 단위 수준의 규모가 필요할 것이다. 최근에 농업기후 모델링으로 농장 규모로 미래기후에 대해 예상할 수 있는 30m 해상도의 시나리오 자료가 개발되었다. 시나리오 자료의 시간 규모는 월 단위(10년 평균)로 제작되었는데 이는 미래 기후를 공간과 시간 규모에 대해 모두 상세화시키는 것이 논리적으로도 맞지 않는 측면도 고려되었다. 이를 극복하고 곤충 모델링에 필요한 시간규모의 자료를 확보하기 위해서는 미래 기후변화에 대한 일반적인 경향을 바탕으로 해서 필요한 시간해상도의 기후자료를 생성하는 방법을 고려할 수 있다. 또 생성된 기후자료는 다양한 모델구동결과를 제시함으로써 미래 기후변화 영향에 대하여 가능한 분포를 나타내줄 수 있다는 장점이 있다.
최근 WMO는 온실가스 배출량 시나리오(SRES)를 대신하여 대표농도경로(RCP)를 바탕으로 새로운 기후변화 시나리오를 생산하였으며 기상연구소는 RCP 시나리오를 바탕으로 한반도의 새로운 기후변화 시나리오를 생산하였다. 본 연구에서는 과거 관측값을 바탕으로 평년(1981-2010)의 애멸구의 우화시기와 세대수를 추정하였으며, RCP 8.5 시나리오를 바탕으로 2020년대(2015-2024), 2050년대(2045-2054)와 2090년대(2085-2094) 애멸구의 우화시기와 세대수를 예측하였다. 평년 애멸구 월동 1세대수의 우화일인 176.0±0.97일과 비교하여 2050년대에서는 13.2±0.18일(162.8±0.91일), 2090년대에는 32.1±0.61일(143.9±1.08일) 앞당겨질 것을 예측되었다. 그리고 애멸구의 연간 세대수는 2050년대에서는 현재보다 2.0±0.02세대, 2090년대에는 5.2±0.06세대 증가할 것으로 예측되었다.
IPCC에서는 2013~2014년 발간 예정인 제5차 기후변화 평가보고서에 대표농도 경로(Representative Concentration Pathway, RCP)를 표준 온실가스 시나리오로 선정하였다. 이에 따라 국립기상연구소는 RCP 시나리오와 함께 지역적인 기후특 성을 반영하여 한반도 기후변화 시나리오를 생산하여 제공하고 있다. 본 연구는 한 반도 기후변화 시나리오를 활용하여 기후변화에 따른 먹노린재(Scotinophara lurida) 발생 동태의 변화를 예측하기 위해서 수행하였다. 먹노린재는 1990년대 충 청도 지방에 다량 발생하여 문제가 되기 시작했으며, 흡즙으로 인하여 반점미가 발 생하는 등 심각한 피해를 유발하는 해충이다. 먹노린재의 발생 동태의 변화를 분석 하기 위해서 온도 발육 실험을 통해 밝혀진 먹노린재의 개체군 동태 모델을 오픈소 스 프로그램인 R을 활용하여 작성하였다. 2001~2010, 2051~2060, 2091~2100년 의 각 10년 동안 전국 평균 기온으로 작성된 월동 성충의 유입 모델을 통해 분석한 결과 월동 성충의 유입시기가 각각의 기간 동안 10~15일 빨라지는 것으로 나타났 다. 또한 개체군 동태 모델을 통해 약충 및 성충의 발생 동태를 분석한 결과 각 영기 별 발생 최성기도 16~21일 빨라지는 것으로 나타났다.
나비는 다수의 종들이 생태계와 육상경관의 기능적 또는 공간적 변화에 민감하므로 다른 곤충 개체군의 변화 감지를 위한 특별한 지표종으로도 활용될 수 있을뿐 아니라 일반 대중들 사이에서 친밀하고 생명의 아름다움의 대명사로 여겨지는 등 좋은 이미지를 보유하고 있어 한반도 생물 다양성 변화의 자각종으로 활용될 수 있다.
본 연구는 불가리아의 Butterfly Conservation Europe의 연구자들에 의해 제시된 기후변화에 따른 서식처 이동 및 멸종 위험이 높은 종을 선정하기 위한 연구를 기반으로 하였다. 우리나라 기상청에서 제시한 IPCC SRES A1B 기후변화 시나리오를 활용하였으며, 우리나라에 서식하는 나비류 중 총 5과 220종 66,162개 정보를 분석대상으로 Maxent 모델을 활용하여 분포지를 통한 서식 예상범위를 제시하였고, 40년 후(2050년)의 해당 종의 분포 변화 양상을 예측하였다. 수집된 자료 중 유의성이 없다고 판단되는 30지점 이하의 자료를 제외하고 총 158종을 분석 대상으로 선정하고 모델을 적용한 결과, 극단적 민감종 25종, 매우 민감종 6종, 다소 민감종 3종, 영향종 2종, 보통종 2종, 잠재종 120종으로 나타났다. 이 결과는 한반도의 기후변화에 따른 생물종의 변동방향과 향후 멸종위기종 및 급증 또는 급감하는 생물종의 관리를 위한 방향성을 제시하는 중요한 자료가 될 것으로 전망된다.
2013~2014년 발간 예정인 IPCC 5차 기후변화 평가보고서를 위해 국제사회는 표준 온실가스 시나리오를 Special Report on Emission Scenarios (SRES)에서 대표농도경로(Representative Concentration Pathway, RCP)로 새롭게 선정하였다. 이에 국립기상연구소는 온실가스 배출 감속정책 이행 여부에 따라 4종의 RCP 온실가스 시나리오를 산출하였다. 본 연구에서는 4종의 RCP 시나리오 중에서 RCP 8.5 시나리오를 이용하여 사과해충인 복숭아심식나방, 복숭아순나방, 사과굴나방의 성충 50% 우화일을 예측하는데, 각 종의 유효적산온도를 이용다. 1980~2010까지 평년기온을 바탕으로 전국 68개 지점의 우화일을 산출하였으며, RCP 8.5 시나리오에 따른 각 해충들의 성충 50% 우화일을 산출하였다. 68개 지점의 산출된 결과를 이용하여 kriging 방식에 의해 등일선을 도출하였다. 복숭아심식나방은 평년 184.7일 대비 2050년에는 약 13일 빨라진 171.6일, 2100년에는 약 33일 빨라진 151.2일에 월동 후 1세대 성충의 50%가 우화할 것으로 산출되었다. 복숭아순방은 평년 134.6일 대비 2050년에는 약 11일, 2100년에는 약 30일 가량 성충의 우화가 앞당겨 질 것으로 예측되었으며, 사과굴나방은 평년 117.3일 대비 2050년에는 약 12일, 2100년에는 약 35일 가량 성충 발생이 앞당겨 질 것으로 예측되었다.
2013~2014년 발간 예정인 IPCC 5차 기후변화 평가보고서를 위해 국제사회는 표준 온실가스 시나리오를 Special Report on Emission Scenarios (SRES)에서 대표농도경로(Representative Concentration Pathway, RCP)로 새롭게 선정하였다. 국립기상연구소는 온실가스 배출 감속정책 이행 여부에 따라 4종의 RCP 온실가스 시나리오를 산출하였다. 본 연구에서는 4종의 RCP 시나리오 중에서 RCP 8.5 시나리오를 이용하여 애멸구의 세대수 및 발생일 변화를 예측하였다. 1980~2010년 전국 68개 지점의 평년기온을 바탕으로 Yamamura와 Kiritani (1998)년 개발한 연간 세대수 변화식을 이용하여 애멸구의 연간 세대수 변화를 산출하였으며, 유효적산온도법을 이용하여 애멸구 월동 후 1세대의 성충 50% 우화일을 산출하였다. 68개 지점의 산출된 결과를 바탕으로 kriging 방식을 이용하여 등일선을 도식화하였다. RCP 8.5 시나리오에 따라 한반도의 기후가 변화한다고 가정하였을 때, 애멸구의 세대수는 전국적으로 2050년에는 평균 2.0±0.02세대 증가하며, 2100년에는 5.2 ± 0.06세대 증가할 것으로 산출되었다. 그리고 애멸구 월동 후 1세대 성충 505 우화일은 2050년에는 평년 176.0±8.07일 대비 약 13일 빨라지고, 2100년에는 약 32일 가량 빨라질 것으로 산출되었다.
본 연구에서는 ECHAM5 모델을 통하여 생산된 현재 및 A1B 미래 기후 변화 시나리오에 따른 미래기후 자료를 미 환경예측 센터의 분광모델인 RSM을 이용하여 역학적 규모축소를 수행하였다. 현재 기후 모의는 1980-2000년 기간에 대하여 수행되었으며, 미래 기후 모의는 2040-2070 기간에 대하여 CORDEX에서 제시한 동아시아 영역에서 수행되었다. RSM의 현재 기후 모의 검증을 통해 이 모델이 기후 관점에서 대기 상태를 적절히 모의함을 판단할 수 있었다. 미래 기후 모의 결과를 현재 기후 모의 결과와 비교하여 본 결과, 여름철에 열대 해양, 남아시아, 일본 부근에서 강수가 증가하였으며, 겨울철에는 서북 태평양 지역과 열대 인도양에서 강수가 증가하였고 열대 동인도양에서는 감소하였다. 동아시아 강수의 기후장에 있어서는 미래 기후가 현재와 큰 차이를 보이지 않지만 2050년 이후의 여름철 강수는 점차 증가하는 추세를 나타내고 있다. 미래 기후의 지상 온도는 현재와 비교해 볼 때 명확한 상승이 분석되었다. 대기장에 있어서는 미래 기후에서 지구 온난화에 대한 반응으로 전체적으로 온도와 지위고도장이 증가하는 변화를 나타내었으며 이에 따라 상층 기압골이 발달함을 보였다.
Due to recent heavy rain events, there are increasing demands for adapting infrastructure design, including drainage facilities in urban basins. Therefore, a clear definition of urban rainfall must be provided; however, currently, such a definition is unavailable. In this study, urban rainfall is defined as a rainfall event that has the potential to cause water-related disasters such as floods and landslides in urban areas. Moreover, based on design rainfall, these disasters are defined as those that causes excess design flooding due to certain rainfall events. These heavy rain scenarios require that the design of various urban rainfall facilities consider design rainfall in the target years of their life cycle, for disaster prevention. The average frequency of heavy rain in each region, inland and coastal areas, was analyzed through a frequency analysis of the highest annual rainfall in the past year. The potential change in future rainfall intensity changes the service level of the infrastructure related to hand-to-hand construction; therefore, the target year and design rainfall considering the climate change premium were presented. Finally, the change in dimensional safety according to the RCP8.5 climate change scenario was predicted.
기후변화는 홍수의 가장 큰 원인이 되는 극치강우의 빈도와 크기에 매우 큰 영향을 미치고 있다. 특히, 우리나라에서 발생하는 대규모 재해는 강우에 의한 홍수피해가 대부분을 차지하고 있다. 이러한 홍수피해는 기후변화에 의한 극한강우의 발생 빈도가 높아짐에 따라 새로운 재해양상으로 전개되고 있다. 하지만, 미래 기후변화 시나리오 자료는 해상도의 한계로 인하여 중소규모 하천 및 도시유역에 요구되는 수준의 자료 수집이 불가능한 상태이다. 이러한 문제점을 개선하기 위하여 본 연구에서는 전지구모형에서 생산된 기후변화 시나리오에 대해서 여러 단계의 통계적 상세화 기법을 통하여 우리나라 전역에 대하여 미래 시나리오에 대한 빈도해석이 가능하도록 각 지점의 특성에 따라 시간적으로 상세화하기 위해 개발된 방 법 및 과정을 소개하였다. 이를 통해, 시간상세화 자료를 토대로 미래 강우에 대한 빈도해석과 기후변화에 따른 방재성능 목표강우량을 산정하는데 활용할 수 있도록 하였다.
본 연구에서는 IPCC가 발간한 AR5 의 시나리오 중 임의로 선택된 RCP 4.5와 RCP 8.5 기후변화 시나리오가 용담댐 유역과 호내의 유량과 수질변화에 미치는 영향을 분석 및 그 방법론을 수립하기 위해서 SWAT 모델과 CE-QUAL-W2 모델을 차례로 사용하였다. 기후변화 시나리오는 용담댐 유역에 대해 상세화 된 자료 를 사용하였으며 2016~2095년의 기간을 2016~2035년, 2036~2065년 그리고 2066~2095년의 세 가지의 기간으로 구분하고 또한 각 연도별로 5월과 10 월 사이의 우기(Wet Season)와 11월과 4월 사이의 건기(Dry Season)로 또한 구분하여 분석하였다. 전체 모의 기간에 대해 산술평균한 용담댐 유역의 유량과 TSS 및 TP는 RCP 4.5가 RCP 8.5 보다 큰 것으로 나타나고 TN의 경우 다른 경향을 나타내었다. 반면, 모델의 예측결과를 기간별 또는 연중 강우특성별로 구별하여 분석한 경우에는 각 경우마다 서로 다른 결과를 나타내고 있다. 기후변화 시나리오가 진행됨에 따라 전반적으로 강우일수는 감소하고 강우강도는 증가하여 갈수기에는 오염물질의 유출이 감소하고, 홍수기에는 오염물질의 유출이 증가하여 연간 오염물질 유출량이 홍수기에 집중되는 특성을 나타내었다. 상기와 동일 한 기간에 대해 SWAT 모델에서 생성된 유역의 자료를 CE-QUAL-W2 모델의 경계조건으로 사용하여 용담댐의 수질변화특성을 모의하였다. TSS와 TP농도는 하절기 강우량의 증가에 따라 특히, 높은 값을 나타내는 것으로 분석되었으나, 고형물질에 잘 흡착되지 않는 TN은 다른 경향이 나타났다. 따라서 기후변화에 의한 장래의 유량 및 수질 변화는 전반적인 경향과 더불어 지역적, 시기적 특성을 또한 반영하여 분석하는 것이 바람직하다고 판단되며 이에 따라 갈수 및 홍수에 의한 시기별, 지역별 유량 및 수질 관리 대책이 별도로 필요할 것으로 판단된다.
The purpose of this study is to quantify the magnitudes of projected 21st century temperature changes and shifting climate zones over Mt. Halla, Korea based on high-resolution (1km×1km) climate change scenario data sets down-scaled from a global climate model (HadGEM2-AO) simulations using PRIDE (PRISM based Downscaling Estimation Model) as well as the simulations of a Regional Climate Model (RCM; HadGEM3-RA). The high resolution climate data demonstrate that the magnitudes of increases in coldest and warmest monthly mean temperatures over Mt. Halla will exceed those of the averages across the Korean Peninsula during the 21st century, leading to the shifts of climate zones. The isoline with 5°C (20°C) of the coldest (warmest) monthly average temperature associated with sub-tropical (sub-alpine) climate zones will migrate from 100~230m (950~1,300m) to 300~500m (1,300~1,600m) of altitude in the late 21st century (2071~2100) under the RCP 4.5 scenario. These changes are expected to be more obviously observed in the south flank of Mt. Halla as well as under the RCP 8.5 scenario. These results indicate that changes in climate zones will lead to the extinction of sub-alpine ecosystems over Mt. Halla due to increases of summertime heat stress as well as to the expansion of the sub-tropical forest zone toward mid-mountain regions due to reduction of wintertime stress in the warmer 21st century.