본 연구는 국가 제조업 경쟁력 강화를 위한 핵심 R&D 사업인 소재부품 기술개발사업을 중심으로 산학연 공동연구 네트워크의 구조적 특성을 분석하고, 각 참여 주체들의 역할과 관계를 규명하여 시사점을 제시하는 것을 목적으로 한다. 이를 위해 최근 5년간 (2020년~2024년) 수행된 소재부품기술개발사업의 공동연구 과제 565건을 대상으로 소셜 네트 워크 분석(Social Network Analysis, SNA)을 수행하였다. 분석 결과, 소재부품기술개발사업의 공동연구 네트워크는 1,262개 기관과 2,048개 협력관계로 구성된 중심-주변부 구조를 가지고 있으며, 산학연 협력(49.4%)이 가장 많은 비중을 차지하였다. 전체 네트워크에서 일부 연구 기관이 지식 공급과 확산을, 기업은 주로 지식의 흡수와 통합 역할을 수행하는 구조를 보였다. 대학은 산업계와 연구계 사이에서 지식의 흐름을 중개하는 핵심 역할을 담당하고 있는 것으로 나타났다. 협력 유형별 분석 결과, 지식의 생산, 통합, 중개 역할을 담당하는 주체가 뚜렷하게 구분되었다. 산학연 협력과 산연 협력에서는 공공 연구기관이 지식 생산 및 확산의 중심 주체로 기능하는 반면, 산학 협력에서는 대학과 대기업이 네트워크의 핵심 허브로 작용하고 있다. 산산 협력에서는 소수의 대기업 중심의 위계적 구조가 두드러졌다. 중개 역할 또한 협력 유형에 따라 상이하게 나타나, 산학연과 산학 협력에서는 대학이, 산연 협력에서는 전문 연구 기관이, 산산 협력에서는 대기업이 지식 가교로서 기능을 수행하고 있음을 확인하였다. 기술 분야별 분석 결과, 전기·전자(33.6%), 기계·소재(27.1%), 화학(20.9%) 분야가 주요 영역으로, 가장 활발한 협력이 이루어지고 있는 것으로 나타났다. 정보통신 및 지식서비스 분야는 상대 적으로 작은 규모이지만 높은 네트워크 밀도를 보였다. 기술 분야별로 주도적 역할을 담당하는 기관 유형에 차이가 나타났는데, 전통적 제조업 기반 분야(기계·소재, 화학, 전기·전자)에서는 공공 연구기관이, 융합연구 기반 분야(정보통신, 바이오·의료)에서는 기업이 지식 생산을 주도 하는 것으로 나타났다. 본 연구는 소재부품 분야 산학연 협력 네트워크의 구조적 특성을 종합 적으로 분석함으로써, 분야별 맞춤형 협력 모델 개발, 핵심 연구기관 지원 강화, 중소기업의 네트워크 참여 활성화 등의 정책적 시사점을 제시하였다.
A high-pressure in-situ permeation measuring system was developed to evaluate the hydrogen permeation properties of polymer sealing materials in hydrogen environments up to 100 MPa. This system employs the manometric method, utilizing a compact and portable manometer to measure the permeated hydrogen over time, following high-pressure hydrogen injection. By utilizing a self-developed permeation-diffusion analysis program, this system enables precise evaluation of permeation properties, including permeability, diffusivity and solubility. To apply the developed system to high-pressure hydrogen permeation tests, the hydrogen permeation properties of ethylene propylene diene monomer (EPDM) materials containing silica fillers, specifically designed for gas seal in high-pressure hydrogen environments, were evaluated. The permeation measurements were conducted under pressure conditions ranging from 5 MPa to 90 MPa. The results showed that as pressure increased, hydrogen permeability and diffusivity decreased, while solubility remained constant regardless of pressure. Finally, the reliability of this system was confirmed through uncertainty analysis of the permeation measurements, with all results falling within an uncertainty of 11.2 %.
소재·부품·장비(소부장) 산업은 국가 제조업 경쟁력의 핵심 동력으로, 정부는 소부장 R&D 지원사업을 통해 소부장 산업 혁신을 유도하고 있다. 본 연구는 성향점수매칭 (PSM)과 이중차분법(DiD) 및 삼중차분법(DDD)을 활용하여 소부장 R&D 지원사업이 수혜 기업의 경제적·기술적·사회적 성과에 미친 영향을 분석하고, 소부장 전문기업 지정효과에 대한 실증적 분석을 수행하였다. 연구결과 소부장 R&D 지원은 기업의 경제적 성과 일부에서 부정 적인 영향을 보였으며 기술적·사회적 성과에서는 유의미한 효과가 미미하였다. 반면에 소부장 전문기업 지정 제도는 순이익증가율, 총자산수익률 등 일부 경제적 성과와 연구개발집중도, 연구개발비증가율 등 일부 기술적 성과에서 유의미한 효과를 보였다. 한편, 사회적 성과에서는 소부장 일반기업 및 전문기업 모두 유의미한 성과를 확인할 수 없었다. 본 연구는 소부장 R&D 지원사업의 효과 분석뿐만 아니라 소부장 전문기업 지정제도를 실증적으로 평가한 점 에서 기존 정책 연구와 차별성을 가진다. 본 연구의 결과를 통해 정책 입안자의 소부장 성과 관리체계 강화 필요성, 소부장 전문기업 지정제도에 대한 제도적 보완과 소부장 기업의 소부장 지원 정책에 대한 전략적 접근 필요성 등을 제시하였다.
본 연구는 합성 아질산염 대체 천연보존료로 개발하고자 천연물 유래 복합추출물(NP-NAP, NP-NAMR)의 성분 특성 과 소시지에의 적용 시 품질 특성을 규명하였다. NP-NAP 와 NP-NAMR 0.5-1.0% (w/v)는 90.1-100%의 ABTS 라디 칼 저해능과 10 mg/mL에서 각각 811 μM 및 770 μM trolox 상당의 FRAP 활성을 보였다. NP-NAP와 NP-NAMR은 S. aureus와 L. monocytogenes, E. coli 및 S. Typhimurium에 대 해 0.1% (w/v)에서 99.99-100%의 감소율을 보였고 C. perfringens에 대해 1%와 2% (w/v)에서 각각 89.0-91.4%와 84.7-100% 이상의 감소율을 보였다. 천연 복합추출물 첨가 소시지 시제품의 냉장 중 품질 특성에서 4주 차 pH (6.43- 6.57)와 NP-NAMR 첨가 시 높은 a 값(23.54% 및 28.81)을 확인하였다. Springiness와 cohesiveness는 NP-NAP 1%가 높 았으나 다른 모든 시험구는 양성 대조구와 유의적 차이가 없었다(P<0.05). 냉장 중 평균 MDA (0.87-1.183 μM)는 양 성 대조구(0.93-0.96 μM)와 유사하였으며(P<0.05) 총 증가 균수(log CFU)는 1% 첨가(1.10-1.32) 시 nitrite pickling salt (NPS) 0.08% (1.31)과 유사하였고 2% 첨가 시(0.17-0.49)는 commercial product from Spain (CPS) 1% (0.53)보다 적었 다. 종합적 기호도는 NP-NAMR 2% 제외한 모든 시험구는 통계적 유의차가 없었다. 이상의 결과, 과채 추출물 유래 NP-NAP와 NP-NAMR은 항산화, 항균 활성과 안정적인 적 색도와 함께 식약처 고시 소시지류의 기준 및 규격을 만족 하여 합성 아질산염과 시판 수입품을 대체하는, 유효한 소 재가 될 수 있을 것으로 사료된다.
This study examined domestic consumption trends in the development of mushroom-based alternative food products. It found that 85.5% of consumers were aware of alternative foods, with a higher recognition rate among younger age groups and variations based on household composition and monthly income. Additionally, 70% of consumers familiar with alternative foods had tried them. Among those who had not, taste (16%) and purchasing challenges (15%) were the primary barriers. Minced meat was the most commonly consumed alternative (25%), while dumplings (7%) and burgers (1%) were less popular. Notably, dumplings and burgers showed the highest potential for development using mushroom-based ingredients. These findings provide valuable foundational data for advancing mushroom-based alternative food products.
This paper explores a convergent approach that combines advanced informatics and computational science to develop road-paving materials. It also analyzes research trends that apply artificial-intelligence technologies to propose research directions for developing new materials and optimizing them for road pavements. This paper reviews various research trends in material design and development, including studies on materials and substances, quantitative structure–activity/property relationship (QSAR/QSPR) research, molecular data, and descriptors, and their applications in the fields of biomedicine, composite materials, and road-construction materials. Data representation is crucial for applying deep learning to construction-material data. Moreover, selecting significant variables for training is important, and the importance of these variables can be evaluated using Pearson’s correlation coefficients or ensemble techniques. In selecting training data and applying appropriate prediction models, the author intends to conduct future research on property prediction and apply string-based representations and generative adversarial networks (GANs). The convergence of artificial intelligence and computational science has enabled transformative changes in the field of material development, contributing significantly to enhancing the performance of road-paving materials. The future impacts of discovering new materials and optimizing research outcomes are highly anticipated.
PURPOSES : As evaluation methods for road paving materials become increasingly complex, there is a need for a method that combines computational science and informatics for new material development. This study aimed to develop a rational methodology for applying molecular dynamics and AI-based material development techniques to the development of additives for asphalt mixtures. METHODS : This study reviewed relevant literature to analyze various molecular models, evaluation methods, and metrics for asphalt binders. It examined the molecular structures and conditions required for calculations using molecular dynamics and evaluated methods for assessing the interactions between additives and asphalt binders, as well as properties such as the density, viscosity, and glass transition temperature. Key evaluation indicators included the concept and application of interaction energy, work of adhesion, cohesive energy density, solubility parameters, radial distribution function, energy barriers, elastic modulus, viscosity, and stress-strain curves. RESULTS : The study identified key factors and conditions for effectively evaluating the physical properties of asphalt binders and additives. It proposed selective application methods and ranges for the layer structure, temperature conditions, and evaluation metrics, considering the actual conditions in which asphalt binders were used. Additional elements and conditions considered in the literature may be further explored, considering the computational demands. CONCLUSIONS : This study devised a methodology for evaluating the physical properties of asphalt binders considering temperature and aging. It reviewed and selected useful indicators for assessing the interaction between asphalt binders, additives, and modified asphalt binders and aggregates under various environmental conditions. By applying the proposed methods and linking the results with informatics, the interaction between asphalt binders and additives could be efficiently evaluated, serving as a reliable method for new material development.
Composite-based piezoelectric devices are extensively studied to develop sustainable power supply and selfpowered devices owing to their excellent mechanical durability and output performance. In this study, we design a leadfree piezoelectric nanocomposite utilizing (Ba0.85Ca0.15)(Ti0.9Zr0.1)O3 (BCTZ) nanomaterials for realizing highly flexible energy harvesters. To improve the output performance of the devices, we incorporate porous BCTZ nanowires (NWs) into the nanoparticle (NP)-based piezoelectric nanocomposite. BCTZ NPs and NWs are synthesized through the solidstate reaction and sol-gel-based electrospinning, respectively; subsequently, they are dispersed inside a polyimide matrix. The output performance of the energy harvesters is measured using an optimized measurement system during repetitive mechanical deformation by varying the composition of the NPs and NWs. A nanocomposite-based energy harvester with 4:1 weight ratio generates the maximum open-circuit voltage and short-circuit current of 0.83 V and 0.28 A, respectively. In this study, self-powered devices are constructed with enhanced output performance by using piezoelectric energy harvesting for application in flexible and wearable devices.
BNKT Ceramics, one of the representative Pb free based piezoelectric ceramics, constitutes a perovskite(ABO3) structure. At this time, the perovskite structure (ABO3) is in the form where the corners of the octahedrons are connected, and in the unit cell, two ions, A and B, are cations, A ion is located at the body center, B ion is located at each corner, and an anion O is located at the center of each side. Since Bi, Na, and K sources constituting the A site are highly volatile at a sintering temperature of 1100℃ or higher, it is difficult to maintain uniformity of the composition. In order to solve this problem, there should be suppression of volatilization of the A site material or additional compensation of the volatilized. In this study, the basic composition of BNKT Ceramics was set to Bi0.5(Na0.78K0.22)0.5TiO3 (= BNKT), and volatile site (Bi, Na, and K sources) were coated in the form of a shell to compensate additionally for the A site ions. In addition, the physical and electrical properties of BNKT and its coated with shell additives(= @BNK) were compared and analyzed, respectively. As a result of analyzing the crystal structure through XRD, both BNKT(Core) and @BNK(Shell) had perovskite phases, and the crystallinity was almost similar. Although the Curie temperature of the two sintered bodies was almost the same (TC = 290 ~ 300 ℃), it was confirmed that the d33 (piezoelectric coefficient) and Pr (residual polarization) values were different. The experimental results indicated that the additional compensation for a shell additive causes the coarsening, resulting in a decrease in sintering density and Pr(remanent polarization). However, coating shell additives to compensate for A site ion is an effective way to suppress volatilization. Based on these experimental results, it would be the biggest advantage to develop an eco-friendly material (Lead-free) that replaced lead (Pb), which is harmful to the human body. This lead-free piezoelectric material can be applied to a biomedical device or products(ex. earphones (hearing aids), heart rate monitors, ultrasonic vibrators, etc.) and skin beauty improvement products (mask packs for whitening and wrinkle improvement).