검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 81

        1.
        2023.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Titanium constitutes approximately 60% of the weight of steel and exhibits strength comparable to steel's but with a higher strength-to-weight ratio. Titanium alloys possess excellent corrosion resistance due to a thin oxide layer at room temperature; however, their reactivity increases above 600°C, leading to oxidation and nitridation. Welding titanium alloys presents challenges such as porosity issues. Laser welding minimizes the heat-affected zone (HAZ) by emitting high output in a localized area for a short duration. This process forms a narrow and deep HAZ, reducing the deterioration of mechanical properties and decreasing the contact area with oxygen. In this study, fiber laser welding was conducted on 8.0mm thick Ti-6Al-4V alloy using the Bead On Plate (BOP) technique. A total of 25 welding conditions were experimented with to observe bead shapes. The results demonstrated successful penetration within the 0.792mm to 8.000mm range. It was concluded that this experimental approach can predict diverse welding conditions for Ti-6Al-4V alloys of various thicknesses.
        4,000원
        2.
        2023.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The effects of annealing on the microstructure and mechanical properties of Al–Zn–Mg–Cu–Si alloys fabricated by high-energy ball milling (HEBM) and spark plasma sintering (SPS) were investigated. The HEBM-free sintered alloy primarily contained Mg2Si, Q-AlCuMgSi, and Si phases. Meanwhile, the HEBM-sintered alloy contains Mg-free Si and θ-Al2Cu phases due to the formation of MgO, which causes Mg depletion in the Al matrix. Annealing without and with HEBM at 500oC causes partial dissolution and coarsening of the Q-AlCuMgSi and Mg2Si phases in the alloy and dissolution of the θ-Al2Cu phase in the alloy, respectively. In both alloys, a thermally stable α-AlFeSi phase was formed after long-term heat treatment. The grain size of the sintered alloys with and without HEBM increased from 0.5 to 1.0 μm and from 2.9 to 6.3 μm, respectively. The hardness of the sintered alloy increases after annealing for 1 h but decreases significantly after 24 h of annealing. Extending the annealing time to 168 h improved the hardness of the alloy without HEBM but had little effect on the alloy with HEBM. The relationship between the microstructural factors and the hardness of the sintered and annealed alloys is discussed.
        4,000원
        3.
        2023.10 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        In this study, changes in the microstructure and mechanical properties of cast and extruded Al-2Li-1Ce alloy materials were investigated as the Mg content was varied. The density decreased to 2.485, 2.46 and 2.435 g/cm3 when the Mg content in the Al-2Li-1Ce alloy was increased to 2, 4 and 6 wt%, respectively. Intermetallic compounds of Al11Ce3 were observed in all alloys, while the β-phase of Al3Mg2 was observed in alloys containing 6 wt% of Mg. In the extruded material, with increasing Mg content the average grain size decreased to 84.8, 71.6 and 36.2 μm, and the fraction of high-angle grain boundaries (greater than 15°) increased to 82.8 %, 88.6 %, and 91.8 %, respectively. This occurred because the increased Mg content promotes dynamic recrystallization during hot extrusion. Tensile test results showed that as the Mg content increased, both the yield strength and tensile strength increased. The yield strength reached 86.1, 107.3, and 186.4 MPa, and the tensile strength reached 215.2, 285, and 360.5 MPa, respectively. However, it is worth noting that the ductility decreased to 27.78 %, 25.65 %, and 20.72 % as the Mg content increased. This reduction in ductility is attributed to the strengthening effect resulting from the increased amount of dissolved Mg, and grain refinement due to dynamic recrystallization.
        4,000원
        4.
        2023.03 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        This research examines the effect of adding aluminum on the structural, phasic, and magnetic properties of CoCrFe NiMnAlx high-entropy alloys. To this aim, the arc-melt process was used under an argon atmosphere for preparing cast samples. The phasic, structural, and magnetic properties of the samples were characterized by x-ray diffraction (XRD), scanning electron microscopy (SEM), and vibrational magnetometry (VSM) analyses. Based on the results, the addition of aluminum to the compound caused changes in the crystalline structure, from FCC solid solution in the CoCrFeNiMn sample to CoCrFeNiMnAl BBC solid solution. It was associated with changes in the magnetic property of CoCrFeNiMnAlx high-entropy alloys, from paramagnetic to ferromagnetic. The maximum saturation magnetization for the CoCrFeNiMnAl casting sample was estimated to be around 79 emu/g. Despite the phase stability of the FCC solid solution with temperature, the solid solution phase formed in the CrCrFeNiMnAl high-entropy compound was not stable, and changed into FCC solid solution with temperature elevation, causing a reduction in saturation magnetization to about 7 emu/g.
        4,000원
        5.
        2022.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Aluminum alloys are extensively employed in several industries, such as automobile, aerospace, and architecture, owing to their high specific strength and electrical and thermal conductivities. However, to meet the rising industrial demands, aluminum alloys must be designed with both excellent mechanical and thermal properties. Computer-aided alloy design is emerging as a technique for developing novel alloys to overcome these trade-off properties. Thus, the development of a new experimental method for designing alloys with high-throughput confirmation is gaining focus. A new approach that rapidly manufactures aluminum alloys with different compositions is required in the alloy design process. This study proposes a combined approach to rapidly investigate the relationship between the microstructure and properties of aluminum alloys using a direct energy deposition system with a dual-nozzle metal 3D printing process. Two types of aluminum alloy powders (Al-4.99Si-1.05Cu-0.47Mg and Al-7Mg) are employed for the 3D printing-based combined method. Nine types of Al-Si-Cu-Mg alloys are manufactured using the combined method, and the relationship between their microstructures and properties is examined.
        4,000원
        6.
        2021.03 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Cr-Si based alloys are not only excellent in corrosion resistance at high temperatures, but also have good wear resistance due to the formation of Cr3Si phase, therefore they are promising as metallic coating materials. Aluminum is often added to Cr-Si alloys to improve the oxidation resistance through which stable alumina surface film is formed. On the other hand, due to the addition of aluminum, various Al-containing phases may be formed and may negatively affect the heat resistance of the Cr-Si-Al alloys, so detailed investigation is required. In this study, two Cr-Si-Al alloys (high-Si & high-Al) were prepared in the form of cast ingots through a vacuum arc melting process and the microstructural changes after high temperature heating process were investigated. In the case of the cast high-Si alloy, a considerable amount of Cr3Si phase was formed, and its hardness was significantly higher than that of the cast high-Al alloy. Also, Al-rich phases (with the high Al/ Cr ratio) were not found much compared to the high-Al alloy. Meanwhile, it was observed that the amount of the Al-rich phases reduced by the annealing heat treatment for both alloys. In the case of the high temperature heating at 1,400 oC, no significant microstructural change was observed in the high Si alloy, but a little more coarse and segregated AlCr phases were found in the high Al alloy compared to the cast state.
        4,000원
        7.
        2019.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, the effects of powder size and composition on the reflectance of Al-Si based alloys are presented. First, the reflectance of Al-Si bulk and powder are analyzed to confirm the effect of powder size. Results show that the bulk has a higher reflectance than that of powder because the bulk has lower surface defects. In addition, the larger the particle size, the higher is the reflectance because the interparticle space decreases. Second, the effect of composition on the reflectance by the changing composition of Al-Si-Mg is confirmed. Consequently, the reflectance of the alloy decreases with the addition of Si and Mg because dendrite Si and Mg2Si are formed, and these have lower reflectance than pure Al. Finally, the reflectance of the alloy is due to the scattering of free electrons, which is closely related to electrical conductivity. Measurements of the electrical conductivity based on the composition of the Al-Si-Mg alloy confirm the same tendency as the reflectance.
        4,000원
        8.
        2018.06 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Binary Ti-Al alloys below 51.0 mass%Al content exhibit a breakaway, transferring from parabolic to linear rate law. The second Al2O3 layer might have some protectiveness before breakaway. Ti-63.1 mass%Al oxidized at 1173 K under parabolic law. Breakaway oxidation is observed in every alloy, except for Ti-63.1 mass%Al. After breakaway, oxidation rates of the binary TiAl alloys below 34.5 mass%Al obey almost linear kinetics. The corrosion rate of Ti-63.1 mass%Al appears to be almost parabolic. As content greater than 63.0 mass% is found to be necessary to form a protective alumina film. Addition of Mo improves the oxidation resistance dramatically. No breakaway is observed at 1123 K, and breakaway is delayed by Mo addition at 1173 K. At 1123 K, no breakaway, but a parabolic increase in mass gain, are observed in the Mo-added TiAl alloys. The binary Ti-34.5 mass%Al exhibits a transfer from parabolic to linear kinetics. At 1173 K, the binary alloys show vary fast linear oxidation and even the Mo-added alloys exhibit breakaway oxidation. The 2.0 mass%Mo-added TiAl exhibits a slope between linear and parabolic. At values of 4.0 and 6.0 mass% added TiAl alloys, slightly larger rates are observed than those for the parabolic rate law, even after breakaway. On those alloys, the second Al2O3 layer appears to be persistently continuous. Oxidation resistance is considerably degraded by the addition of Mn. Mn appears to have the effect of breaking the continuity of the second Al2O3 layer.
        3,000원
        9.
        2017.10 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        In order to develop a new commercial Al-12%Si casting alloy with improved physical properties, we investigated the effect of adding Sr and TiB to the alloy. Al-12%Si alloys were prepared by die casting at 660 oC. The eutectic temperature of the Sr-modified Al-12%Si alloy decreased to 9 oC and the mushy zone region increased. The shape of the Si phase changed from coarse acicula to fine fiber with the addition of Sr. The addition of TiB in the Al-12%Si alloy reduced the size of the primary α-Al and eutectic Si phases. When Sr and TiB were added together, it worked more effectively in refinement and modification. The density of twins in the Si phase-doped Sr increased and the width of the twins was refined to 5 nm. These results are related to the impurity induced twinning(IIT) growth.
        4,000원
        10.
        2017.09 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        An optimum route to fabricate oxide dispersion strengthened ferritic superalloy with desired microstructure was investigated. Two methods of high energy ball milling or polymeric additive solution route for developing a uniform dispersion of Y2O3 particles in Fe-Cr-Al-Ti alloy powders were compared on the basis of the resulting microstructures. Microstructural observation revealed that the crystalline size of Fe decreased with increases in milling time, to values of about 15-20 nm, and that an FeCr alloy phase was formed. SEM and TEM analyses of the alloy powders fabricated by solution route using yttrium nitrate and polyvinyl alcohol showed that the nano-sized Y-oxide particles were well distributed in the Fe based alloy powders. The prepared powders were sintered at 1000 and 1100 oC for 30 min in vacuum. The sintered specimen with heat treatment before spark plasma sintering at 1100 oC showed a more homogeneous microstructure. In the case of sintering at 1100 oC, the alloys exhibited densified microstructure and the formation of large reaction phases due to oxidation of Al.
        4,000원
        11.
        2017.01 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Binary Ti-Al alloys containing 50 to 60 atomic percent aluminum are rapidly solidified by hammer anvil method under an argon atmosphere. Constituent phases in each alloy are identified by X-ray diffractometry and microstructures of the alloys are investigated using a transmission electron microscope. In alloys with aluminum content between 50 and 54 percent, a second phase exists besides TiAl(γ); this second phase is identified as Ti3Al(α2). The α2 phase is observed in two types of morphology. One is as fine lamellar alternating with γ and the other is as a particle. It is concluded that the existence of a metastable phase with the morphologies stated above should arise from a higher quenching rate attained by the hammer anvil method as compared to the conventional roll or splat-quench method. Implications of the above observation are discussed with respect to the phase relations in the Ti-Al binary system; these implications are still controversial in many respects.
        3,000원
        12.
        2016.11 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The cold rolling workability and mechanical properties of two new alloys, designed and cast Al-5.5Mg-2.9Si and Al-7Mg-0.9Zn alloys, were investigated in detail. The two alloy sheets of 4 mm thickness, 30 mm width and 100 mm length were reduced to a thickness of 1 mm by multi-pass rolling at ambient temperature. The rolling workability was better for the Al-7Mg-0.9Zn alloy than for the Al-5.5Mg-2.9Si alloy; in case of the former alloy, edge cracks began to occur at 50% rolling reduction, and their number and length increased with rolling reduction; however, in the latter alloy, the sheets did not have any cracks even at higher rolling reduction. The mechanical properties of tensile strength and elongation were also better in the Al-7Mg-0.9Zn alloy than in Al-5.5Mg-2.9Si alloy. Work hardening ability after cold rolling was also higher in the Al-7Mg- 0.9Zn alloy than in the Al-5.5Mg-2.9Si alloy. At the same time, the texture development was very similar for both alloys; typical rolling texture developed in both alloys. These differences in the two alloys can primarily be explained by the existence of precipitates of Mg2Si. It is concluded that the Al-7Mg-0.9Zn alloy is better than the Al-5.5Mg-2.9Si alloy in terms of mechanical properties.
        4,000원
        13.
        2016.05 구독 인증기관 무료, 개인회원 유료
        In this study, the effect of wear resistance was investigated in Al 7075 alloys. For this purpose, three wear factor which are wear loss, coefficient of friction and friction forec applied to test wear-resistance. Wear test of ball-on-disk has been performed using steel balls to determine the variation of wear characteristics. Finally, the coefficient of wear was calculated by the Archard wear equation in Al 7075 alloys.
        3,000원
        14.
        2014.02 구독 인증기관 무료, 개인회원 유료
        Recently, the automobile industry need environmental standards and demands decrease of vehicle weight to reduce the environmental pollution. magnesium-Aluminum cast alloys are of commercial importance because of their various applications in the automotive industry. These alloys offer a combination of a high degree of achievable strength with excellent castability, light weight and good machinability with regard to both permanent molds and die castings forming. This paper show oxide distribution and deformation on casting condition of Mg elbow support. Moreover the microstructure of Mg elbow support is observed in the integrity assessment of porosity for nondestructive radiation x-ray.
        3,000원
        15.
        2012.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        최근 FRP 선박의 폐선 처리문제, 환경 규제의 강화, 자원 재활용 등의 관점에서 소형 알루미늄 합금 선박의 건조가 증가하는 추세이다. 그러나 알루미늄은 가볍기 때문에 해양에서 고속으로 운행 가능한 알루미늄 선박은 캐비테이션이 발생되어 기포붕괴에 따른 큰 충격압력에 의해 캐비테이션 침식이 일어남으로서 재료의 수명에 있어 문제점을 드러내고 있다. 따라서 본 연구에는 캐비테이션에 의한 손상을 방지하여 내구 수명을 연장시키기 위한 방법으로 워터 캐비테이션 피닝 기술을 선박용 알루미늄 합금에 적용하였다. 이를 위하여 워터 캐비테이션 피닝을 실시하여 내캐비테이션 특성이 가장 우수한 적용 시간을 규명하였다. 선박용 알루미늄 합금 5456-H116, 5083-H321 그리고 5052-O는 워터캐비테이션 피닝을 실시함으로써 내캐비테이션 특성이 워터 캐비테이션 피닝을 하지 않은 시편보다 무게감소량이 각각 42.11 %, 50.0 % 그리고 25.7 % 개선되었다.
        4,000원
        16.
        2012.07 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Two types of nanoclusters, termed Cluster (1) and Cluster (2) here, both play an important role in the age-hardening behavior in Al-Mg-Si alloys. Small amounts of additions of Cu and Ag affect the formation of nanoclusters. Two exothermic peaks were clearly detected in differential scanning calorimetry(DSC) curves by means of peak separation by the Gaussian method in the base, Cu-added, Ag-added and Cu-Ag-added Al-Mg-Si alloys. The formation of nanoclusters in the initial stage of natural aging was suppressed in the Ag-added and Cu-Ag-added alloys, while the formation of nanoclusters was enhanced at an aging time longer than 259.2 ks(3 days) of natural aging with the addition Cu and Ag. The formation of nanoclusters while aging at 100˚C was accelerated in the Cu-added, Ag-added and Cu-Ag-added alloys due to the attractive interaction between the Cu and Ag atoms and the Mg atoms. The influence of additions of Cu and Ag on the clustering behavior during low-temperature aging was well characterized based on the interaction energies among solute atoms and on vacancies derived from the first-principle calculation of the full-potential Korrinaga-Kohn-Rostoker(FPKKR)-Green function method. The effects of low Cu and Ag additions on the formation of nanoclusters were also discussed based on the age-hardening phenomena.
        4,000원
        17.
        2012.04 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Recently, various attempts to produce a heat sink made of Al 6xxx alloys have been carried out using die-casting. In order to apply die-casting, the Al alloys should be verified for die-soldering ability with die steel. It is generally well known that both Fe and Mn contents have effects on decreasing die soldering, especially with aluminum alloys containing substantial amounts of Si. However, die soldering has not been widely studied for the low Si aluminum (1.0~2.0wt%) alloys. Therefore, in this study, an investigation was performed to consider how the soldering phenomena were affected by Fe and Mn contents in low Si aluminum alloys. Each aluminum alloy was melted and held at 680˚C. Then, STD61 substrate was dipped for 2 hr in the melt. The specimens, which were air cooled, were observed using a scanning electron microscope and were line analyzed by an electron probe micro analyzer. The SEM results of the dipping soldering test showed an Al-Fe inter-metallic layer in the microstructure. With increasing Fe content up to 0.35%, the Al-Fe inter-metallic layer became thicker. In Al-1.0%Si alloy, the additional content of Mn also increased the thickness of the inter-metallic layer compared to that in the alloy without Mn. In addition, EPMA analysis showed that Al-Fe inter-metallic compounds such as Al2Fe, Al3Fe, and Al5Fe2 formed in the die soldering layers.
        4,000원
        18.
        2011.07 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        In this paper, high temperature oxidation behavior of newly developed alloys, Ti-6Al-4Fe and Ti-6Al-1Fe, is examined. To understand the effect of Fe on the air oxidation behavior of the Ti-Al-Fe alloy system, thermal oxidation tests are carried out at 700˚C and 800˚C for 96 hours. Ti-6Al-4V alloy is also prepared and tested under the same conditions for comparison with the developed alloys. The oxidation resistance of the Ti-Al-Fe alloy system is superior to that of Ti-6Al-4V alloy. Ti-6Al-4V shows the worst oxidation resistance for all test conditions. This is not a result of the addition of Fe, but rather it is due to the elimination of V, which has deleterious effects on high temperature oxidation. The oxidation of the Ti-Al-Fe alloy system follows the parabolic rate law. At 700˚C, Fe addition does not have a noticeable influence on the amount of weight gain of all specimens. However, at 800˚C, Ti-6Al-4Fe alloy shows remarkable degradation compared to Ti-6Al-1Fe and Ti-6Al. It is discovered that the formation of Al2O3, a diffusion resistance layer, is remarkably hindered by a relative decrease of the α volume fraction. This is because Fe addition increases the volume fraction of β phase within the Ti-6Al-xFe alloy system. Activities of Al, Ti, and Fe with respect to the formation of oxide layers are calculated and analyzed to explore the oxidation mechanism.
        4,000원
        19.
        2010.01 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Creep tests were conducted under a condition of constant stress on two aluminum-based alloys containing particles: Al-5% Mg-0.25% Fe and Al-5% Zn-0.22% Fe. The role of grain boundary sliding was examined in the plane of the surface using a square grid printed on the surface by carbon deposition and perpendicular to the surface using two-beam interferometry. Estimates of the contribution of grain boundary sliding to the total strain, εgbs/εt reveal two trends; (i) the sliding contribution is consistently higher in the Al-Mg-Fe alloy, and (ii) the sliding contribution is essentially independent of strain in the Al-Mg-Fe alloy, but it shows a significant decrease with increasing strain in the Al-Zn-Fe alloy. Sliding is inhibited by the presence of particles and its contributions to the total strain are low. This inhibition is attributed to the interaction between the grain boundary dislocations responsible for sliding and particles in the boundaries.
        4,000원
        20.
        2007.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this work, the dispersion behavior of particles in binary aluminum (Al)-copper (Cu) cast alloy was investigated with respect to Cu contents of 20 (hypoeutertic), 33 (eutectic) and 40 (hypereutectic) wt.%. In cases of hypo and hypereutectic compositions, SEM images revealed that the primary Al and phases were grown up at the beginning, respectively, and thereafter the eutectic phase was solidified. In addition, it was found that some of particles can be dispersed into the primary Al phase, but none of them are is observed inside the primary 6 phase. This different dispersion behavior of particles is probably due to the difference in the val- ues of specific gravity between particles and primary phases. At eutectic composition, particles were well dispersed in the matrix since there is few primary phases acting as an impediment site for particle dispersion during solidification. Based on the experimental results, it is concluded that particles are mostly dispersed into the eutectic phase in binary Al-Cu alloy system.
        3,000원
        1 2 3 4 5