Ti-based alloys are widely used in biomaterials owing to their excellent biocompatibility. In this study, Ti- Mn-Cu alloys are prepared by high-energy ball milling, magnetic pulsed compaction, and pressureless sintering. The microstructure and microhardness of the Ti-Mn-Cu alloys with variation of the Cu addition and compaction pressure are analyzed. The correlation between the composition, compaction pressure, and density is investigated by measuring the green density and sintered density for samples with different compositions, subjected to various compaction pressures. For all compositions, it is confirmed that the green density increases proportionally as the compaction pressure increases, but the sintered density decreases owing to gas formation from the pyrolysis of TiH2 powders and reduction of oxides on the surface of the starting powders during the sintering process. In addition, an increase in the amount of Cu addition changes the volume fractions of the α-Ti and β-Ti phases, and the microstructure of the alloys with different compositions also changes. It is demonstrated that these changes in the phase volume fraction and microstructure are closely related to the mechanical properties of the Ti-Mn-Cu alloys.
As an alternative to the W plug used in MOSFETs, a Cu plug with a NiSi contact using Ta / TaN as a diffusion barrier is currently being considered. Conventionally, Ni was first deposited and then NiSi was formed, followed by the barrier and Cu deposition. In this study, Ti was employed as a barrier material and simultaneous formation of the NiSi contact and Cu plug / Ti barrier was attempted. Cu(100 nm) / Ti / Ni(20 nm) with varying Ti thicknesses were deposited on a Si substrate and annealed at 4000˚C for 30 min. For comparison, Cu/Ti/NiSi thin films were also formed by the conventional method. Optical Microscopy (OM), Scanning Probe Microscopy (SPM), X-Ray Diffractometry (XRD), and Auger Electron Microscopy (AES) analysis were performed to characterize the inter-diffusion properties. For a Ti interlayer thicker than 50 nm, the NiSi formation was incomplete, although Cu diffusion was inhibited by the Ti barrier. For a Ti thickness of 20 nm and less, an almost stoichiometric NiSi contact along with the Cu plug and Ti barrier layers was formed. The results were comparable to that formed by the conventional method and showed that this alternative process has potential as a formation process for the Cu plug/Ti barrier/NiSi contact system.
The amorphization process and the thermal properties of amorphous TiCuNiAl powder during milling by mechanical alloying were examined by X-ray diffractometry (XRD), differential scanning calorimetry (DSC), and transmission electron microscopy (TEM). The chemical composition of the samples was examined by an energy dispersive X-ray spectrometry (EDX) facility attached to the scanning electron microscope (SEM). The as-milled powders showed a broad peak (2 = 42.4) with crystalline size of about 5.0 nm in the XRD patterns. The entire milling process could be divided into three different stages: agglomeration (0 < t 3 h), disintegration (3 h < t 20 h), and homogenization (20 h < t 40 h) (t: milling time). In the DSC experiment, the peak temperature T and crystallization temperature T were 466.9 and 444.3, respectively, and the values of T, and T increased with a heating rate (HR). The activation energies of crystallization for the as-milled powder was 291.5 kJ/mol for T.
TiCuNiAl quaternary amorphous alloy was prepared by high-energy ball milling process. A complete amorphization was confirmed for the composition of TiCuNiAl after milling for 30hrs. Differential scanning calorimetry showed a large super-cooled liquid region (T = T T, T and T: glass transition and crystallization onset temperatures, respectively) of 80 K. Prepared amorphous powders of TiCuNiAl were consolidated by spark-plasma sintering. Densification behavior and microstructure changes were investigated. Samples sintered at higher temperature of 713 K had a nearly full density. With increasing the sintering temperature, the compressive strength increased to fracture strength of 756 MPa in the case of sintering at 733 K, which showed a 'transparticle' fracture. The samples sintered at above 693 K showed the elongation maximum above 2%.
The effects of post-CMP cleaning on the chemical and galvanic corrosion of copper (Cu) and titanium(Ti) were studied in patterned silicon (Si) wafers. First, variation of the corrosion rate was investigated as afunction of the concentration of citric acid that was included in both the CMP slurry and the post-CMP solution.The open circuit potential (OCP) of Cu decreased as the citric acid concentration increased. In contrast withCu, the OCP of titanium (Ti) increased as this concentration increased. The gap in the OCP between Cu andTi increased as citric acid concentration increased, which increased the galvanic corrosion rate between Cu andTi. The corrosion rates of Cu showed a linear relationship with the concentrations of citric acid. Second, theeffect of Triton X-100®, a nonionic surfactant, in a post-CMP solution on the electrochemical characteristics ofthe specimens was also investigated. The OCP of Cu decreased as the surfactant concentration increased. Incontrast with Cu, the OCP of Ti increased greatly as this concentration increased. Given that Triton X-100®changes its micelle structure according to its concentration in the solution, the corrosion rate of eachconcentration was tested.
Ti-Cu-Ni-Sn quaternary amorphous alloys of Ti50Cu32Ni15Sn3, Ti50Cu25Ni20Sn5, and Ti50Cu23Ni20Sn7 composition were prepared by mechanical alloying in a planetary high-energy ball-mill (AGO-2). The amorphization of all three alloys was found to set in after milling at 300rpm speed for 2h. A complete amorphization was observed for Ti50Cu32Ni15Sn3 and Ti50Cu25Ni20Sn5 after 30h and 20h of milling, respectively. Differential scanning calorimetry analyses revealed that the thermal stability increased in the order of Ti50Cu32Ni15Sn3, Ti50Cu25Ni20Sn5, and Ti50Cu23Ni20Sn7.
Warm compaction powder metallurgy was used to produce a Ti3SiC2 particulate reinforced Cu matrix composite. Fabrication parameters and warm compaction behaviors of Cu powder were studied. Based on the optimized fabrication parameters a Cu-based electrical contact material was prepared. Results showed that in expend of some electrical conductivity, addition of Ti3SiC2 particulate increased the hardness, wear resistivity and anti-friction ability of the sintered Cu-base material.