검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 12

        1.
        2017.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study aimed to evaluate the utilization of the top of a low intake of root, through the analysis of the antioxidant activity of the powder of hydroponic-cultured ginseng. Quality characteristics and antioxidant activity were compared and analyzed with Korea’s traditional dessert Gaeseong-Juak, which is made of the powder of hydroponic-cultured ginseng's leaf by adjusting the added volume. DPPH radical scavenging activity of the hydroponic-cultured ginseng by the part powder was in the following order: highly stem, leaf and root. It was measured as 67.9%, 42.9%, and 25.9% at the 1 mg/m level. Gaeseong-Juak was prepared by adding hydroponic-cultured ginseng leaf powder at 0%, 0.3%, 0.6%, and 0.9% of the rice powder. As the content of hydroponic-cultured ginseng leaf powder increased, moisture content, L-value, and a-value were significantly decreased, while the b-value was significantly increased. The texture profile analysis of Gaeseong-Juak was not significantly different among the samples. In the sensory test, the sample containing 0.6% hydroponic-cultured ginseng leaf powder achieved good scores. The DPPH radical scavenging activity of Gaeseong-Juak was significantly increased, as the addition level increased, compared to the original. Based on the above results, hydroponic-cultured ginseng leaf was verified to be a possible natural antioxidant. It can increase food's nutritional values and possibilities when made of hydroponic-cultured ginseng, using leaf which is added to the traditional dessert Gaeseong-Juak.
        4,000원
        2.
        2015.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        팽이버섯 내에 존재하는 GAD 효소를 발효를 통해 활 성화 시켜 MSG를 GABA로의 전환율을 높이고자 하였다. 효과적인 고농도 GABA를 생산하기 위해 나노분말 팽이 버섯에다가 수경재배한 인삼을 첨가하여 야쿠르트발효기 에서 발효한 결과 GABA 전환율은 팽이나노인삼분말 발 효군(88%) > 팽이분말 발효군(52%) > 팽이나노분말 발 효군(44%) 순으로 나타났다. 이러한 결과는 MSG를 기질 로 첨가하는 식품에서 활용할 가치가 있으리라 사료된다.
        3,000원
        3.
        2018.12 KCI 등재 서비스 종료(열람 제한)
        Background: Ginseng produced by hydroponics can be cultivated without using agricultural chemicals; thus, it can be used as a raw materials for functional foods, medicines, and cosmetics. This study aimed to determine the optimal harvesting time to obtain the highest levels of ginsenoside and ginseng, as this was not previously unknown. Methods and Results: One-year-old organic ginseng seedlings were transplanted and cultivated using hydroponics for 150 days in a venlo-type greenhouse, using ginseng nursery bed soil and a nutrient solution (NO3 −-N; 6.165, P; 3.525, K; 5.625, Ca; 4.365, Mg; 5.085, S; 5.31 mEq/ℓ). Ginsenoside content and fresh and dry weights were higher at 120 days after transplanting than at 30, 60, 90, and 150 days. Total ginsenoside content was 11.86 times higher in the leaf and stem than in the root at 120 days after transplanting. Ginsenosides F1, F2, F3, and F5 were detected in ginseng leaves and stems. These chemical compounds are known to be effective in altering skin properties, including whitening, anti-inflammation, and anti-aging. Conclusions: Optimal harvesting time for ginseng cultivated using hydroponics was 120 days after transplanting when the biomass and ginsenoside content were highest.
        4.
        2017.08 KCI 등재 서비스 종료(열람 제한)
        Background: The production method of ginseng seedlings for ginseng cultivation is very important to ensure healthy rooting system as well as high quality, and yield of the resultant plants. This study was carried out to compare the growth characteristics of 2- year-old ginseng plants that were produced from seedlings grown in self soil nursery (SSN), nursery soil (NS) or hydroponic culture (HC). Methods and Results: The shading prop used was composed of four-layered 4 polyethylene (blue 3 + black 1) shade screen. The management of main field was done by inserting oil cake (1,200 ㎏/10 a) and then allowing Sudan grass to grow for a year. Seedling transplantation was carried out on April 6. Root growth was measured on October 25. Root weight was observed to be excellent at 6.0 g, following SSN transplantation. Root length was 21.2 ㎝ for HC seedlings, but these plants had a physiological disorder (i.e., rusty root), in 83.5% plants of this treatment. The ratio of PD/PT (protopanaxadiol saponins / protopanaxatriol saponins) was higher in NS seedlings. Plant analysis revealed that Fe content was lower in HC seedlings with high rustiness. The growth of 2-years-old ginseng was different following these varying seedling cultivation methods, but seedlings from NS were not different from those grown in SSN. Conclusions: For the propagation of 2-year-old ginseng plants, NS seedlings may be a good substitute for SSN seedlings.
        5.
        2017.06 KCI 등재 서비스 종료(열람 제한)
        Background: Ginseng is a perennial crop grown for more than four years in the same place. Therefore, it is highly affected by the soil environment, especially nutrients in the soil. The present study was carried out to investigate to the influence of boron and iron concentrations on the physiological status, growth, and mineral uptake of ginseng to obtain the basic information for diagnosing a physiological disorder in ginseng plants. Methods and Results: The boron and iron concentrations were controlled at 3, 30, 150, 300 and 2, 20, 100, 200㎎/ℓ, respectively. When treated with 150㎎/ℓ of boron, the ginseng plants showed yellowing or necrosis symptoms at the edge or end of their leaves. Compared with the 3㎎/ℓ treatment, the root weight decreased by 13 and 24% in the 150 and 300㎎/ℓ treatments, respectively. When treated with 20㎎/ℓ of iron, the ginseng plants showed yellowing between the veins of the leaves followed by the formation of brown spots. The root weight gradually decreased with increasing iron concentration. Approximately 55% decrease in root weight was observed upon treatment with 200㎎/ℓ of iron. Conclusions: The boron toxicity occurs in the leaves of ginseng at the boron concentration of approximately 1,900㎎/㎏ or more. The iron toxicity occurs at the iron concentration of approximately 120㎎/㎏ for leaves and 270㎎/㎏ for roots.
        6.
        2016.06 KCI 등재 서비스 종료(열람 제한)
        Background: Electrical conductivity (EC) and pH are important features of nutrient solution, affecting both growth and quality of crops by altering nutrient uptake. Methods and Results: The pH values of nutrient solutions were controlled at 5.0, 5.5, 6.0, 6.5 and EC values were controlled at 0.68, 0.84, 1.23, 1.41 dS/m. Gingesng root weights were higher during the initial growth period when the plants were treated with low pH and low EC nutrient solutions. However, the higher pH and EC levels, the greater the increase in the rate of root weight between the initial and middle growth periods. The highest ginsenoside amount changed during growth period. The total ginsenoside amount was highest in the root, and the lowest in leaves at 45 and 90 days after treatment, respectively, with solution at a pH of 6.0. After 135 days of treatment, the highest total ginsenoside amount was detected in root treated with soluton with EC values of 1.23 dS/m. Conclusions: For the cultivation of ginseng using a nutriculture system, the pH and EC values of nutrient solutions should to be controlled based on the stage of growth and targeted plant organ (root or leaves).
        7.
        2016.05 서비스 종료(열람 제한)
        Background : An important feature of the nutrient solution is that they affect not only the growth but also quality of crops by changing nutrient uptake, especially due to changes of EC in nutrient solution. This study was carried out to investigate effect of EC in nutrient solution on growth and ginsenoside of ginseng. Methods and Results : EC in nutrient solution was controlled with 0.68, 0.84, 1.23, 1.41 dS/m. The root weight of ginseng treated by low EC levels in nutrient solution was higher during the initial of growth. However, the higher EC levels, the more increased the change rate of root weight from the initial to the middle of growth. The highest amount of ginsenoside was changed by growth period. Although the total amount of ginsenoside in root is highest treated by EC 0.68 dS/m at 45 days after treatment. the total amount of ginsenoside in root is highest treated by EC 1.23 dS/m at 135 days after treatment. Conclusions : EC in nutrient solution should to be controlled depending on the stage of growth and the part of use, i.e. root and leaves, when ginseng is cultivated through nutri-culture.
        8.
        2016.05 서비스 종료(열람 제한)
        Background : Boron (B) is an essential element required for the growth of plant. It has a narrow range of optimal concentration from minimum to maximum thresholds than other micro-elements. The study was carried out to investigate to the influence of B excess concentrations on physiological disorder of leaf, growth and mineral concentration of ginseng to obtain basic information for physiological disorder diagnose. Methods and Results : The ginseng cultivar ‘Gumpoong’ was cultivated by hydroponic system for 2 months. The toxicity symptoms which ginseng leaves were curved downwardly and induced to chlorosis after beginning to dry the edge appeared on leaves more than 30 ppm compared to the control(3 ppm). The growth of ginseng was more decreased with higher B concentration. Mn uptake was also decreased as B concentration increased. It was found that B excess hindered the growth of ginseng and was reversely related to Mn uptake. Conclusions : More than B 30 ppm can negatively affect growth and mineral uptake. Consequently, B excess can occur physiological disorder of ginseng.
        11.
        2012.08 KCI 등재 서비스 종료(열람 제한)
        The management and control of mineral nutrients is one of most important techniques to increase the productivity and the quality of Korean ginseng. The mineral nutrients are measured with different plant tissues and different growth stages of 2-year-old ginseng grown under hydroponic culture with two different temperatures. The content of N, P, Ca, and Mg were higher at low temperature in both leaves and roots than those at high temperature. However, the content of K was high in leaves at low temperature compared to that of high temperature, while it was not significantly different in roots. The uptake amounts of N and K was higher throughout the experimental period at low temperature in both leaves and roots than those at high temperature. However, the uptake amount of P was not clearly different between two different temperatures and among six different growth stages. The uptake amount of N, P, K was generally decreased in leaves from June to August, while it was increased in roots. The relationship between dry weight and mineral nutrients in leaves was appeared positive with N, K, Ca, and Mg, but negative P. In roots, N, K, Ca, and Mg were negative, showing that was positive with only P. Comparing the correlation coefficients among mineral nutrients in leaves, N and K were significantly positive correlation each other. P was significantly positive correlation with Na and Zn. In case of roots, N was highly significant positive correlation with K, Mg, and Mn, but P was negatively correlated with Ca, Cu, Na, Fe, and Zn.
        12.
        2012.06 KCI 등재 서비스 종료(열람 제한)
        This study was carried out to have the basic and applied informations relating to increase the productivity and quality of ginseng. 2 years-old ginseng was cultivated under hydroponic culture with the controlled environment conditions in a greenhouse. Major growth characters and yields were investigated with two different temperatures and several growth stages. The plant height and stem diameter were higher at low temperature than those at high temperature. They were not clearly different with six different growth stages. The root length was not clearly different between two temperatures; however it was continuously grown from June until August. The root diameter was higher at low temperature than that at high temperature. It was rapidly increased from June until August. The length, width, and area of leaf were higher at low temperature than those at high temperature. The fresh and dry weights of different plant tissues were also heavier at low temperature than those at high temperature. The moisture content of ginseng root was continuously decreased from June until August. The yield of ginseng was higher at low temperature compared to that at high temperature. The cultivating conditions in hydroponic culture of ginseng, especially temperature, would be an important factor to have better growth and production.