Industrial activities that utilize nuclear technology can cause radioactive contamination in the ecosystems. In particular, cesium (Cs) has problems, such as neurological diseases, when it is exposed and accumulated in the bodies of animals, plants, and humans for a long time. Therefore, the development of simple and economical adsorbents for Cs removal is required. In this study, the surface of petroleum residue pitch was modified using NaClO and it was used to remove Cs from an aqueous solution. Batch experiments and characterization of the modified adsorbent were performed to determine the adsorption mechanism between the adsorbent and Cs. From these results, chemical and monolayer adsorption were found to occur at the carboxyl groups on the adsorbent surface, along with a cation exchange reaction occurred due to the sodium ions on the surface. Through this modification process, the total acidity, including phenolic, lactonic and carboxylic functional groups, was improved to 1.563 mmol/g and the maximum adsorption capacity of Cs for the modified adsorbent was 65.8 mg/g.
From 2020, Korean Animal and Plant Quarantine Agency has reset the withdrawal time (WT) for veterinary drugs typically used in livestock in preparation for the introduction of positive list system (PLS) program in 2024. This study was conducted to reset the MRL for tiamulin (TML) in broiler chickens as a part of PLS program introduction. Forty-eight healthy Ross broiler chickens were orally administered with TML at the concentration of 25 g/L (TML-1, n=24) and 50 g/L (TML-2, n=24) for 5 days through drinking water, respectively. After the drug treatment, tissue samples were collected from six broiler chickens at 1, 2, 3 and 5 days, respectively. According to the previously established analysis method, residual TML concentrations in poultry tissues were determined using LC-MS/MS. In TML-1, TML in all tissues was detected less than LOQ at 2 days after drug treatment. In TML-2, TML in liver and kidney was detected more than LOQ at 2 days after treatment. According to the European Medicines Agency’s guideline on determination of withdrawal periods, withdrawal periods of TML-1 and TML-2 in poultry tissues were established to 0 and 2 days, respectively. In conclusion, the estimated WT of TML in poultry tissues is shorter than the current WT recommendation of 5 days for TML in broiler chickens.
In Korea, twenty-nine types of microbial pesticides and thirty-two types of naturally occurring materials and chemicals are exempt from MRL (maximum residue level), and fifty types of active ingredients of pesticides are exempt from establishing the acceptable daily intake (ADI) during the pesticide registration process. Out of these materials, twenty-nine types of microbial pesticides and thirty-two types of naturally occurring materials and chemicals are exempt from MRL. Twenty-seven microorganisms and fifteen chemicals are exempt from both ADI and MRL. The European Union exempts the MRL for 148 active pesticide ingredients, and CODEX suggested sixty-three substances as exempt substances from setting the MRL. In Japan, sixty-five types of pesticide components were exempted from MRL. MRL-exempted substances differed depending on the referenced agency, which is presumed to be due to differences in the types of pesticides approved and the approved usage methods in each country. In most countries, MRL exemptions for pesticides are based on toxicity and exposure assessments, and these substances are composed of substances that have a very low risk to the human body or remain in food and are not exposed to the human body and MRLs are exempted based on GAP (good agricultural practice) approved during the licensing process. By referring to the CODEX and the European Union's MRL exemption guidelines, a guideline for evaluating pesticide safety was prepared to determine it as an MRL-exempt substance when setting standards for pesticide residue in Korea. Conclusively, most regulatory agencies decide whether to exempt pesticides from MRL by considering GAP and indications for use during the registration process, and criteria for evaluating exemptions include risk factors, possibility of human exposure and management options.
This study was conducted to reset the maximum residue limit (MRL) for didecyldimethylammonium chloride (DDAC) in broiler chickens. The disinfectant containing DDAC (10%, w/w) was diluted 160 times and evenly sprayed on the bodies of twenty-four broiler chickens at a rate of 15 mL per day per bird for 7 days. After the disinfectant treatment, tissue samples were collected from six broiler chickens at 0.25, 1, 3 and 5 days, respectively. Residual DDAC concentrations in poultry tissues were determined using LC-MS/MS. Correlation coefficient (0.99 >), the limits quantification (LOQ, 2.0~10.0 μg/kg), recoveries (86.9~118.6%), and coefficient of variations (<19.98%) were satisfied the validation criteria of Korean Ministry of Food and Drug Safety. In all tissues except for liver, DDAC was detected more than LOQ at 5 days after the disinfectant treatment. In liver tissues, DDAC was detected more than LOQ at 3 days after treatment. According to the European Medicines Agency’s guideline on determination of withdrawal periods, withdrawal period of DDAC in poultry tissues was established to 26 days. In conclusion, the developed analytical method is sensitive and reliable for detecting DDAC in poultry tissues. When DDAC disinfectant is sprayed on a poultry house in the presence of broiler chickens, it is necessary to keep the disinfectant from contacting the body of the livestock.
This study compared the physicochemical properties of soybean curd residue and black soybean curd residue produced by hot air-drying and freeze-drying. Regardless of drying method, the crude protein, crude ash, crude fiber contents, pH, L, a, b color values and water soluble index were higher in soybean curd residue, whereas total polyphenol contents and antioxidant activity were higher in black soybean curd residue. Significant differences in water absorption index, oil absorption capacity and emulsion activity were observed between soybean curd residue and black soybean curd residue in freeze-drying. On the other hand, the emulsion stability was not significant difference in both hot-air drying and freezedrying. The crude protein and crude fiber contents of soybean curd residue were not significant difference between hot-air drying and freeze-drying. Freeze-drying resulted in higher crude ash contents, pH, water absorption index, water soluble index, oil absorption capacity, emulsion activity and emulsion stability than hot-air drying. Hot-air drying have caused significantly higher water contents, water activity, total polyphenol contents and antioxidant activity in soybean curd residue than freeze-drying. In conclusion, soybean type and drying methods affect the physicochemical and quality characteristics of soybean curd residue, which could be important factors in the manufacture of processed foods.
This study investigated ethopabate (EPB) residues in edible tissues of broiler chickens given in drinking water and established the withdrawal time (WT) of EPB in poultry tissues. Twenty-four healthy Ross broiler chickens were orally administered with EPB at the concentration of 3.8 mg/L for 14 days (EPB-1, n=24) and 15.2 mg/L for 7 days (EPB-2, n=24) through drinking water, respectively. After the drug treatment, tissue samples were collected from six broiler chickens at 0, 1, 3, and 5 days, respectively. EPB residue concentrations in poultry tissues were determined using LC-MS/MS. Correlation coefficient values ranged from 0.9980 to 0.9998, and the limits of detection and quantification (LOQ) were 0.03~0.09 and 0.1~0.3 μg/kg, respectively. Mean recoveries in muscle, liver, kidney and skin/fat tissues were 95.9~109.8, 108.7~115.3, 89.9~96.6 and 86.7~96.8%, respectively, and coefficient of variations were less than 17.11%. At the end of the drug-administration period (0 day), EPB was detected at levels under the LOQ in all tissues from both the EPB-1 and EPB-2 groups. According to the results of EPB residue in Ross broiler tissues, withdrawal periods of both EPB-1 and EPB-2 in poultry tissues were established to 0 day. In conclusion, the developed analytical method is suitable for the detection of EPB in poultry tissues, and the estimated WT of EPB in poultry tissues will contribute to ensuring the safety of Ross broiler chickens.
From 2020, Korean Animal and Plant Quarantine Agency has reset the withdrawal time (WT) for veterinary drugs typically used in livestock in preparation for the introduction of positive list system (PLS) program in 2024. This study was conducted to reset the MRL for amprolium (APL) in broiler chickens as a part of PLS program introduction. Forty-eight healthy Ross broiler chickens were orally administered with APL at the concentration of 60 mg/L (APL-1, n=24) for 14 days and 240 mg/L (APL-2, n=24) for 7 days through drinking water, respectively. After the drug treatment, tissue samples were collected from six broiler chickens at 0, 1, 3 and 5 days, respectively. Residual APL concentrations in poultry tissues were determined using LC-MS/MS. Correlation coefficient (0.99 >), the limits quantification (LOQ, 0.3~5.0 μg/kg), recoveries (81.5~112.4%), and coefficient of variations (<15.5%) were satisfied the validation criteria of Korean Ministry of Food and Drug Safety. In APL-1, APL in all tissues except for kidney was detected less than LOQ at 3 days after drug treatment. In APL-2, APL in liver and kidney was detected more than LOQ at 5 days after treatment. According to the European Medicines Agency’s guideline on determination of withdrawal periods, withdrawal periods of APL-1 and APL-2 in poultry tissues were established to 3 and 2 days, respectively. In conclusion, the developed analytical method is sensitive and reliable for detecting APL in poultry tissues. The estimated WT of APL in poultry tissues is longer than the current WT recommendation of 2 days for APL in broiler chickens.
커피 부산물을 이용하여 대체실험동물 모델인 제브라피쉬 배아 독성 및 미백 효능에 대한 실험 을 진행하였다. 커피 부산물 추출물을 처리한 배아 독성 실험의 결과 24, 48, 72hpf에서 125ppm 농도에서 는 각각 3, 3, 5%로 응고율을 나타냈다. 배아의 부화율은 최고 농도인 125ppm에서 73%를 나타냈다. 제브 라피쉬 치어의 심장 박동수 실험에서 72hpf 후 심박수가 125ppm 농도에서 153회/60s’로 확인되었다. 음 성대조군은 148회/60s’으로 대조군의 비해 심박수의 변화가 크지 않았으며, 낮은 독성을 나타냈다. 또한 미백효능을 평가한 결과 커피 부산물 추출물의 농도가 증가할수록 멜라닌 형성이 저해되는 것으로 나타났 다. 본 연구 결과를 통해 천연 유래 부산물 소재가 화장품 원료로 활용할 수 있다는 가능성을 제안하며, 천 연 부산물의 부가가치를 높이는 연구 예시로서 화장품 산업에 활용되기를 기대한다.
In this study, we examined the residual amounts of formaldehyde in hygiene products to determine the safety of these products in Gyeonggi-do. Formaldehyde is among the harmful substances that may remain within certain hygiene products. On the basis of an analysis of formaldehyde in a total of 222 items (6 disposable paper straws, 9 disposable paper napkins, 21 toilet papers, 13 disposable dishcloths, 16 disposable paper towels, 32 wet wipes for food service restaurants, 25 disposable cotton swabs, and 100 disposable diapers), we detected traces in three wet wipes for food service restaurants (1.87 to 4.45 mg/kg), which is approximately 9% to 22% of the standard level (20 mg/kg). We established that all the hygiene products assessed in the study met the individual standards for formaldehyde, thereby confirming that safe products are being distributed. In the standards and specifications for hygiene products, the formaldehyde test method is regulated for application with respect to three categories based on the type of product. The samples used in this study were of types for which method 1 or method 2 is applied, and the limits of detection, limits of quantification, linearity, and recovery rates were reviewed to verify the validity of each test method. When method 2 was applied, we experienced interference when performing analysis at a wavelength of 412 nm, which was associated with the influence of impurities in some samples of disposable cotton swabs and disposable diapers. Consequently, in these cases, the results were compared after analysis using method 1. By comparing the results obtained using method 2 with those obtained using method 1, the latter of which were unaffected by the interference of impurities, we were able to detect formaldehyde at low concentrations. These findings accordingly highlight the necessity to standardize the formaldehyde test method for future analyses.
This study investigated chlorpheniramine maleate (CPM) residues in milk of intramuscularly dosed dairy cows and established the withdrawal time (WT) of CPM in milk. Sixteen healthy Holstein cows were injected with 10 (CPM-1) and 20 mL (CPM-2) of the drug containing 4 mg/mL of CPM, respectively. After administration of CPM, milk samples were collected from all cows at 12 hour intervals for 5 days. CPM residue concentrations in milk were determined using LC-MS/MS. The correlation coefficient of the calibration curve was 0.9956, and the limits of detection and quantification (LOQ) were 0.6 and 1.0 μg/kg, respectively. Recoveries ranged between 98.5-115.0%, and coefficient of variations were less than 10.96%. After treatment, CPM in CPM-1 and CPM-2 was detected below the LOQ in all milk samples at 12 hours. According to the European Medicines Agency’s guideline on determination of withdrawal periods for milk, withdrawal periods of both CPM-1 and CPM-2 in milk were established to 12 hours. In conclusion, the developed analytical method is sensitive and reliable for detection of CPM in milk, and the estimated WT of CPM in bovine milk will contribute to ensuring the safety of milk.
In Malaysia, there are several industries processing mineral ores generate residues containing naturally occurring radioactive material (NORM) with activity concentrations above the control limits established by the Malaysian Atomic Energy Licensing Board (AELB). These industries use mineral ores or concentrated ores as their feed materials to produce or extract valuable sand minerals or rare earth compounds for use in another industries. The control limits for activity concentrations of Uranium-238 (U-238) and Thorium-232 (Th-232) and their decay series is 1.0 Becquerel per gram (Bq·g−1) while activity concentration of Potassium 40 (K-40) is 10.0 Bq·g−1. The management of residue containing NORM radioactivity above the control limits must be done in accordance with current rules and regulations including proper handling, storage, transportation and/or disposal. Where possible, appropriate mixture process with other non-radiological material would reduce the activity concentrations to below the control limits. Depending on specific characteristics of residue, appropriate approach to reuse or recycle should be encouraged as part of special waste management. For this case, an exemption to release it from radiological controls can be applied but require scrutiny review and approval process by AELB. In addition, the health and safety aspects and environmental issues should be assessed which to be done in accordance with the relevant rules and regulations. As a last resort, a disposal of residue containing NORM radioactivity shall be done at the landfill disposal facility approved by AELB and other relevant Authorities.
Pyrolysis fuel oil (PFO) is used for the manufacturing of high-purity pitch for carbon precursor due to its high carbon content, high aromaticity, and low heterogeneous element and impurity content. Pitch is commonly classified with its softening point, which is most considerable physical property affecting to various characteristics of the carbon materials based on pitch, such as electrical and thermal conductivity, mechanical strength, and pore property. Hence, the softening point should be controlled to apply pitch to produce various carbon materials for different applications. Previous studies introduce reforming process under high pressure and two step heat treatment for the synthesis of pitch with high softening point from PFO. These methods lead to a high process cost; therefore, it is necessary to develop a process to synthesize the pitch with high softening point by using energy effective process at a low temperature. In this study, waste polyethylene terephthalate (PET) was added to control the softening point of PFO-based pitch. The pitch synthesized by the heat treatment with the addition of PET showed the softening point higher than that of the pitch synthesized with only PFO. The softening point of PFObased pitch synthesized at 420 °C was 138.3 °C, while that of the pitch synthesized by adding PET under the same process conditions was 342.8 °C. It is proposed that the effect of the PET addition on the increase in the softening point was due to the radicals generated from thermal degradation of PET. The radicals from PET react with the PFO molecules to promote the polymerization and finally increase the molecular weight and softening point of the pitch. In addition, activated carbon was prepared by using the pitch synthesized by adding PET, and the results showed that the specific surface area of the activated carbon increased by the addition of PET. It is expected that the pitch synthesis method with PET addition significantly contributes to the manufacture of pitch and activated carbon.
Fluoroimide는 감과 감자의 둥근무늬낙엽병과 역병을 억제하는데 효과가있는 살진균제로서, 이전 사용되었던 fluoroimide의 시험법은 전처리시 발암물질인 benzene을 사 용하는 문제가 있었으며, 복잡한 시험법으로 인해 시간이 오래걸리고 효율이 떨어지는 단점이 있었다. 또한, fluoroimide 의 특성상 산성에서 안정한 편이므로 전처리 시 이를 고려해야 하는 문제가 있었으며, PLS시행에 따라 기존의 정량한계인 0.05 mg/kg보다 낮은 정량한계 요구로 인해 fluoroimide에 대한 새로운 전처리방법이 필요하였다. Fluoroimide가 산성에서 안정한 특성을 고려하여, 추출 시 4N의 염산을 사용하였고 용매는 acetic acid가 포함된 acetonitrile을 사용하였으며, MgSO4와 NaCl을 통해 추출하였다. 정제는 C18 (Octadecylsilane)과 GCB (graphitized carbon black)를 첨가하여 정제하였으며, 기기분석은 LCMS/ MS로 분석하였다. 대표농산물 5종(현미, 감자, 대두, 감귤, 고추)을 대상으로 정량한계(0.01 mg/kg), 정량한계 10배(0.1 mg/kg), 정량한계 50배(0.5 mg/kg)의 수준으로 회수율 실험을 5반복 실시하였으며, 그 결과는 농산물 5종에 서 85.7-106.9%의 회수율을 확인하였으며, 분석오차는 15.6% 이하의 결과를 보여, 국제식품 규격위원회 가이드 라인의 잔류농약 분석 기준 및 ‘식품등 시험법 마련 표준 절차에 관한 가이드라인(2016)’에 부합하였다. 상기의 결과를 통해 개선한 fluoroimide의 시험법은 benzene을 대체 해 실험자의 안전성을 확보하였고, QuEChERS법을 적용하여 효율을 높여, 안전관리에 대한 공정시험법으로서 활용가능할 것으로 사료된다.
농약허용물질목록관리제도의 시행에 따라, 농약의 안전 사용이 더욱 중시되었다. 산림식용자원(임산물)은 소규모 재배 등의 이유로 등록된 농약의 수가 적어, 등록되지 않 은 농약이 많이 사용되고 있다. 이에 임산물에 대한 농약 사용 실태를 파악하고자, 산림식용자원 10종에 대한 잔류 농약 및 중금속 잔류 실태 조사를 하였다. 엽경채류인 두릅, 참죽나무, 음나무, 옻나무의 새순, 한약재인 두충, 가시오갈피의 수피, 열매류인 초피나무, 산초나무, 은행나무의 열매와 도토리를 대상으로 잔류농약과 중금속 잔류를 분석하였다. 검출 빈도는 두릅, 참죽나무, 음나무, 두충, 가시오갈피, 초피, 산초에서 각각 6.7, 13.3, 11.8, 13.3, 10.0, 46.768 및73.3%였으며, 옻나무, 은행, 도토리에서는 검출 되지 않았다. 검출된 잔류농약은 모두 미등록 농약 이였다. 중금속은 모든 시료에서 검출되지 않았다. 본 연구에 서 얻은 임산물별 사용농약에 대한 정보는 병해충 방제를 위한 농약 사용현황을 확인하여, 추후 농약등록을 위한 정보를 제공하므로 국내 임산물의 안전성 확인을 위한 자료로 활용할 가치가 있을 것이다.
전국 12개 지역에서 수집된 표고 768건, 표고배지 143 건의 시료를 대상으로 다종다성분 320종 및 단성분 mepiquat chloride에 대해 분석한 결과, 표고 4건, 표고배지 3건으로 총 7건에서 잔류농약이 검출되었으며, 검출된 성분은 carbendazim, diflubenzuron, fluopyram, dinotefuran 이었다. 본 연구에서는 표고 3건, 배지 1건으로 총 4건의 시료에서 carbendazim이 검출되었으나 각각의 검출량은 0.056 mg/kg, 0.17 mg/kg, 0.043 mg/kg, 0.09 mg/kg으로 MRL 인 0.7 mg/kg에 비해 소량으로 나타났다. Fluopyram은 0.068 mg/kg, dinotefuran은 0.06 mg/kg으로 모두 배지에서 각각 1건씩 검출되었다. 식물생장조절제로 사용되는 mepiquat chloride는 본 연구에서는 검출되지 않았다. 전체 수집표고 중 소수의 시료에서 잔류농약이 검출되었나, 등록되지 않은 농약은 PLS에 의하면 0.01 ppm이 최대허용치로 구분되어 있어, 후속 연구를 통하여 표고를 비롯한 버섯류의 안전성의 기준 작성에 필수적인 자료를 확보하고자 한다.
본 연구는 식물성 식품에 대한 잔류농약의 국내와 코덱 스의 residue definition 비교를 통해 국내에서 식이노출과 소평가의 가능성이 있는 농약성분을 파악하고 더 나아가 식이노출 과소평가가 위해성 평가에 미치는 영향에 대해 우선적으로 검토가 필요한 농약성분을 알아내고자 하였다. 연구결과, 국내와 코덱스의 residue definition 정보로부터 식이노출 과소평가의 가능성이 있는 44종의 농약성분이 파악되었다. 이들 성분 중 농약성분의 ADI값, 국내 MRL 정보 및 대사물질의 독성학적 정보에 근거하여 다음의 24종 농약성분이 식이노출 과소평가가 위해성 평가에 미치는 영향에 대해 우선적으로 검토가 필요한 것으로 나타났다: acibensolar-S-methyl, chlorfenapyr, chlorothalonil, cyantraniliprole, cyclaniliprole, cyflumetofen, dithiocarbamates, fenamidone, fenpyroximate, fluazifop-P-butyl, fluopicolide, flupyradifuron, fluxapyroxad, glyphosate, hexythiazox, isoprothiolane, isopyrazam, myclobutanil, penthiopyrad, propiconazole, spinetoram, spiromesifen, spirotetramat, trifloxystrobin. 더 나아가 chlorfenapyr, chlorothalonil, dithiocarbamates, fenamidone은 대사물질의 독성이 더 커서 특히 우선적으로 검토가 요구되는 것으로 판단된다 . 본 연구는 식품 중 잔류농약에 대한 국내 위해성 평가방법의 개선을 위해 활용될 수 있을 것으로 기대된다.
농약허용물질목록관린제도의 시행에 따라, 농약의 안전 사용이 더욱 중시되었다. 산림식용자원(임산물)은 소규모 재배 등의 이유로 등록된 농약의 수가 적어, 등록되지 않은 농약의 사용이 예상된다. 이에, 본 연구는 임산물에 대 한 농약사용실태를 파악하고자, 산림식용자원 13종에 대한 농약 및 중금속 잔류실태조사를 하였다. 산나물류 조사 시료인 고사리, 참나물, 도라지, 더덕에 대하여 조사 시료의 0%, 40.0%, 20.0, 26.7%에서 농약이 검출되었고, 약초류인 참쑥, 당귀, 마는 13.3%, 56.3%, 0%의 농약 사용 이 확인되었다. 과실류 조사 시료인 석류, 복분자딸기, 다래, 머루, 돌배, 결명자에서는 조사 시료의 57.1%, 33.3%, 26.7%, 66.7%, 46.7%, 0%에서 농약이 검출되었다. 중금속 (납, 카드뮴)은 도라지와 참쑥에서만 검출되었다. 연구에서 얻은 임산물별 사용농약에 대한 정보는 병해충 방제를 위한 사용현황을 확인하여, 추후 농약등록을 위한 정보를 제 공하므로 국내 임산물의 안전성 확인을 위한 자료로 활용 할 가치가 있을 것이다.