검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 23

        1.
        2023.06 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        To develop a high capacity lithium secondary battery, a new approach to anode material synthesis is required, capable of producing an anode that exceeds the energy density limit of a carbon-based anode. This research synthesized carbon nano silicon composites as an anode material for a secondary battery using the RF thermal plasma method, which is an ecofriendly dry synthesis method. Prior to material synthesis, a silicon raw material was mixed at 10, 20, 30, 40, and 50 wt% based on the carbon raw material in a powder form, and the temperature change inside the reaction field depending on the applied plasma power was calculated. Information about the materials in the synthesized carbon nano silicon composites were confirmed through XRD analysis, showing carbon (86.7~52.6 %), silicon (7.2~36.2 %), and silicon carbide (6.1~11.2 %). Through FE-SEM analysis, it was confirmed that the silicon bonded to carbon was distributed at sizes of 100 nm or less. The bonding shape of the silicon nano particles bonded to carbon was observed through TEM analysis. The initial electrochemical charging/ discharging test for the 40 wt% silicon mixture showed excellent electrical characteristics of 1,517 mAh/g (91.9 %) and an irreversible capacity of 133 mAh/g (8.1 %).
        4,000원
        2.
        2023.04 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        In this study, a new type of composite material combined with carbonyl iron, a relatively strong ferromagnetic material, was prepared to overcome the current application limitations of Prussian blue, which is effective in removing radioactive cesium. The surface of the prepared composite was analyzed using SEM and XRD, and it was confirmed that nano-sized Prussian Blue was synthesized on the particle surface. In order to evaluate the cesium removal ability, 0.2 g of the composite prepared for raw cesium aquatic solution at a concentration of 5 μg was added and reacted, resulting in a cesium removal rate of 99.5 %. The complex follows Langmuir’s adsorption model and has a maximum adsorption amount (qe) of 79.3 mg/g. The Central Composite Design (CCD) of the Response Surface Method (RSM) was used to derive the optimal application conditions of the prepared composite. The optimal application conditions achieved using Response optimization appeared at a stirring speed of pH 7, 17.6 RPM. The composite manufactured through this research is a material that overcomes the Prussian Blue limit in powder form and is considered to be excellent economically and environmentally when applied to a cesium removal site.
        4,000원
        3.
        2021.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        There is increasing demand for the development of a new material with high strength, high stiffness, and good electrical conductivity that can be used for high-voltage direct current cables. In this study, we develop aluminumbased composites containing C60 fullerenes, carbon nanotubes, or graphene using a powder metallurgical route and evaluate their strength, stiffness, coefficient of thermal expansion, and electrical conductivity. By optimizing the process conditions, a material with a tensile strength of 800 MPa, an elastic modulus of 90 GPa, and an electrical conductivity of 40% IACS is obtained, which may replace iron-core cables. Furthermore, by designing the type and volume fraction of the reinforcement, a material with a tensile strength of 380 MPa, elastic modulus of 80 GPa, and electrical conductivity of 54% IACS is obtained, which may compete with AA 6201 aluminum alloys for use in all-aluminum conductor cables.
        4,000원
        4.
        2020.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Indoor air contaminated with various pollutants commonly poses a risk to human health, and the need for installing air purifiers has been increasing. However, in commercial air purifiers pollutants-removal efficiency and durability are generally low. Since silver nano-composites are known to have catalytic oxidation and antibacterial capacities, it was anticipated to be applicable for indoor air purifiers. In this study, silver nano-composites were applied to granular activated carbon and scrubber solutions to treat a mixture of three air pollutants including toluene, formaldehyde, and bioaerosol. In the activated carbon deposited with silver nano-particles, the specific surface area decreased, resulting in a 10% loss of adsorption capacity for toluene. However, the removal efficacy of formaldehyde and bioaerosol increased by 10% due to the catalytic oxidation and antibacterial capacities. In the scrubber operation with silver nano-particles, the removal rates of formaldehyde and bioaerosol improved by 20%, while toluene removal was not observed. When the activated carbon column and the scrubber was connected in series, toluene was mainly removed by the activated carbon, and the removal rates of formaldehyde and bioaerosol increased in the presence of silver nano-particles. Consequently, for the improvement of indoor air quality, it is deemed appropriate to apply silver nano-material to indoor environments contaminated with pollutant mixtures.
        4,000원
        5.
        2018.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        자외선차단 화장품은 기능성 화장품 중의 하나로서, 유·무기 자외선차단물질이 함유되어 있다. 무기계 자외선차단제는 주로 산화아연, 이산화티탄 등이 있다. 무기계 자외선차단제는 입자의 지름이 60 ~ 100 nm로 자외선 A, B의 차단능이 좋은 것으로 알려져 있다. 또한 자외선을 포함한 태양광선에 대해 비활성이 크고 안전성이 우수하다. 그리고 유기계 자외선차단제처럼 피부에 흡수 또는 축적되지 않으므로 피부 자극이나 알레르기를 유발하지 않는다. 본 연구에서는 판상 무기안료인 마이카, 자외선차단 효과를 갖는 이산화티탄 나노입자, 소수성 실리카를 각각 계면활성제로 표면처리 하였고, 각 물질의 전하 차이에 따른 비화학적인 상호 인력 작용에 의해 마이카에 이산화티탄 나노입자, 실리카를 물리적으로 흡착시켰다. 이후, 소수성 표면처리제인 실란을 표면처리 하여 소수성을 갖는 자외선 차단 판상 마이카 복합체를 제조하였다. 자외선 차단 판상 마이카 복합체는 일반적인 나노입자 이산화티탄의 응집성을 개선하고 균일한 분산에 따른 자외선차단 효과가 증대되었으며, 소수성으로 표면처리를 하여 화장품 제형에서의 분산안정성을 크게 개선할 수 있었다. 안료의 표면전하는 제타전위로 평가하였으며, 제조된 자외선차단 마이카 복합체의 특성 평가는 FE-SEM, XRD, FT-IR, UV-VIS 등으로 확인하였다.
        4,000원
        6.
        2018.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구에서는 Cellulose Nano-Crystals (CNCs) 수용액을 이용하여 시멘트 페이스트의 강도 향상에 대한 실험을 수행하고 이 연구결과를 토대로 하여 CNC 혼입에 따른 섬유보강 고인성 시멘트 복합체의 강도 특성에 관한 실험을 진행하였다. 먼저, CNC의 최적 배합비를 결정하기 위한 일환으로, 골재를 포함하지 않은 시멘트 페이스트의 강도 특성을 비교하기 위해 CNC 혼입율에 따라 수용액을 제조하였다. CNC 혼입율은 시멘트 대비 0.1, 0.2, 0.4 vol.%를 주요 변수로 하였고, 이에 따른 휨강도는 0.4 vol.%에서 플레인 시험체와 비교시 최대 8 배까지 강도가 증가하는 것을 확인할 수 있었다. 이 연구결과와 기존 연구결과를 토대로 하여, 본 연구에서는 0.4, 0.8 및 1.2 vol.%의 CNC 혼입율을 주요변수로 한 강섬유와 아마섬유를 활용한 섬유보강 고인성 시멘트 복합체 시험체를 제작한 후 역학적 강도 특성을 평가하여 섬유보강 고인성 시멘트 복합체의 구조적 성능을 규명하였다.
        4,000원
        8.
        2017.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The purpose of this study is to investigate the optimum conditions of dispersion and strength to maximize the mechanical properties of woody cellulose nano–crystal (CNC). As a dispersing method, ultrasonic dispersing machine and magnetic stirrer were used as the mechanical dispersion method. The mixing ratio of cellulose nano-crystals (CNCs) was 0.2% and the dispersion time was 10 minutes. Steam curing was carried out for 6, 24 and 48 hours. Based on the experimental results, we will propose source technology regarding CNC for construction materials.
        4,000원
        9.
        2015.10 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        GNPs have several excellent mechanical properties including high strength, a good young’s modulus, thermal conductivity, corrosion resistance, electronic shielding, etc. In this study, CF/GNP/Epoxy composites were manufactured using GNP weight ratios of 0.15 wt%, 0.3 wt%, 0.5 wt%, 0.7 wt% and 1 wt%. The composites were manufactured with a mechanical method (3-roll-mill). Tensile, impact and wear tests were performed according to ASTM standards D3039, D256 and D3181, respectively. The results show that the CF/GNP0.3wt%/Epoxy composites have good mechanical properties, e.g., tensile strength and impact and wear resistance. In this study, both carbon fabric and GNPs were used as reinforcements in the composites. The mechanical properties increased and weight loss decreased as the GNP content in the resin films was increased.
        4,000원
        10.
        2015.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The microstructures and cyclic voltammograms of Al-Si/C nano-composites were investigated as the anode of lithium ion batteries. Al-Si nanoparticles were prepared by the arc-discharge method. Al-Si/C nanoparticles were obtained by coated Al-Si nanoparticles with the precursor of glucose (C6H12O6) as carbon source. It was indicated that the post carbon coating treatment can reduce Al2O3 film on Al-Si particles, and new phase Al4C3 formed in the process can activate the inactivated materials of electrode in a certain extent.
        4,000원
        11.
        2014.05 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The friction and wear characteristics of the rubber matrix composites filled with nano sized silica particles were investigated at ambient temperature by pin-on-disc friction test. The volume fraction of silica particles was 19%. The cumulative wear volume and wear rate of these materials on counterpart roughness were determined experimentally. The major failure mechanisms were lapping layers, deformation of matrix, ploughing, debonding of particles, fracture of particles and microcracking by scanning electric microscopy photograph of the tested surface. The cumulative wear volume showed a tendency to increase with increase of sliding distance. The wear rate of these composites tested indicated low value as increasing the sliding distance.
        4,000원
        12.
        2013.02 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The study of grinding behavior characteristics on aluminum powders and carbon nano tubes (CNTs) has recently gained scientific interest due to their useful effect in enhancing advanced nano materials and components, which significantly improves the property of new mechatronics integrated materials and components. We performed a series of dry grinding experiments using a planetary ball mill to systematically investigate the grinding behavior during Al/CNTs nano composite fabrication. This study focused on a comparative study of the various experimental conditions at several variations of rotation speeds, grinding time and with and without CNTs. The results were monitored for the particle size distribution, median diameter, crystal structure from XRD pattern and particle morphology at a given grinding time. It was observed that pure aluminum powders agglomerated with low rotation speed and completely enhanced powder agglomeration. However, Al/CNTs composites were achieved at maximum experiment conditions (350 rpm, 60 min.) of this study by a mechanical alloy process for Al/CNTs mixed powders because the grinding behavior of Al/CNTs composite powder was affected by addition of CNTs. Indeed, the powder morphology and crystal size of the composite powders changed more by an increase of grinding time and rotation speed.
        4,000원
        13.
        2011.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Titanium carbonitride is more perspective materials compared to titanium carbide. It can be used in tool industry and special products because of its higher strength, abrasive wear-resistance and especially its strong chemical stability at high temperatures. We produced STS+TiCxNy composite by the spark plasma sintering for higher strength and studied the characteristics. The planar and cross-sectional microstructures of the specimens were observed by scanning electron microscopy. Characterizations of the carbon and nitride phases on the surface of composite were carried out using an X-ray diffractometer. During annealing TiCxNy particles diffusion into STS 430 was observed. After annealing, sintering isolations between particles were formed. It causes decreasing of mechanical strength. In addition when annealing temperature was increased hardness increased. Heterogeneous distribution of alloying elements particles was observed. After annealing composites, highest value of hardness was 738.1 MHV.
        4,000원
        14.
        2010.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The fabrication of interconnect from titanium powders and powders is investigated. Corrosion-resistant titanium and are used as reinforcement in order to reveal high heat and corrosion resistance at the elevated temperature. We fabricated the plates for interconnect reinforced with by mixing titanium powders with 10 wt.% of nano-sized . Spark Plasma Sintering (SPS) was chosen for the sintering of these composites. The plate made of titanium powders and powders demonstrates higher corrosion resistance than that of the plate of titanium powders alone. The physical properties of specimens were analyzed by performing hardness test and biaxial strength test. The electrochemical properties, such as corrosion resistance and hydrogen permeability at high temperature, were also investigated. The microstructures of the specimens were investigated by FESEM and profiles of chemical compositions were analyzed by EDX.
        4,000원
        15.
        2009.09 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The Zr-based bulk metallic glass matrix composites of a mixture of gas-atomized metallic glass powders and Fe-based nanostructured powders were fabricated by spark plasma sintering. The Fe-based nanostructured powders adopted for the enhancement of plasticity were well distributed in the matrix after consolidation, and the matrix remains as a fully amorphous phase. The successful consolidation of metallic glass matrix composite with high density was attributed to viscous flow in the supercooled liquid state during spark plasma sintering. Unlike other amorphous matrix composites, in which improved ductility could be obtained at the expense of their strength, the developed composite exhibited improvement both in strength and ductility. The ductility improvement in the composite was considered to be due to the formation of multiple shear bands under the presence of the Fe-based nanostructured particles.
        4,000원
        16.
        2008.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        On the base of experience in development of Magnetic Powder Composites, and particularly Soft Magnetic Composites, authors are trying to systematize classification and indicate possible development prospective of Magnetic Nanocomposites (MN) technology and their applications in electrical converters. Clear classification and systematization, at an early stage of any materials and technology development, are essential and lead for better understanding and communication between researchers and industry involved. This concern MN as well and it seems to be the right time to make it at present stage of their development. Presented proposal of classification distinguishes various types of MN by their magnetic properties and area of possible applications. It is not a close set of types, and can be extended due to increase of knowledge concern these nanocomposites.
        4,200원
        17.
        2006.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this research we tried to make nano-sized TiNx by using planetary milling, and we made the composites double layered of titanium and nano-sized TiNx by using spark plasma sintering apparatus after mixing with the different ratio of pure titanium powder, and they were heat treated at for 30 minutes. The crystal structures of nano-sized TiNx powders and the composites were analyzed by X-ray diffraction (XRD). The microstructures of the powders were analyzed by using scanning electron microscopy (FESEM) and the 40-50 nm size of nano-sized TiNx particle on the surface of agglomerated particles was investigated. With increasing the ratio of nano-sized TiNx of the composites, the microvickers hardness of the composites was increased.
        4,000원
        19.
        2002.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Processing and properties of composites with Ni-Fe content of 10 and 15 wt% were investigated. Homogeneous powder mixtures of /Ni-Fe alloy were prepared by the solution-chemistry route using , and powders. Microstructural observation of composite powder revealed that Ni-Fe alloy particles with a size of 20nm were homogeneously dispersed on powder surfaces. Hot-pressed composites showed enhanced fracture toughness and magnetic response. The properties are discussed based on the observed microstructural characteristics
        4,000원
        20.
        2001.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        /TiN nano/nano-type composites were successfully fabricated by the combination of a mechano-chemical grinding (MCG) method and a short time sintering process, and their wear resistance was evaluated. Powder mixtures of and Ti were prepared using mechano-chemical grinding process and the resulting nanocomposite powder mixtures were consolidated using pulsed electric current sintering (PECS). TEM observation showed that the nano/nano-type composites consisted of homogeneous and very fine matrix grains with the size less than 100 nm. The obtained -based nano/nano-type showed high wear resistance and electric discharge machinability.
        3,000원
        1 2