검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 45

        1.
        2023.11 구독 인증기관·개인회원 무료
        Various types of radioactive liquid and solid wastes are generated during the operation and decommissioning of nuclear power plants. To remove radionuclides Co-60, Cs-137 etc. from a liquid waste, the ion-exchange process based on organic resins has been commonly used for the operation of nuclear facilities. Due to the considerations for the final disposal of process endproduct, other treatment methods such as adsorption, precipitation using some inorganic materials have been suggested to prepare for large amounts of waste during decommissioning. This study evaluated sintering characteristics for radioactive precipitates generated during the liquid waste treatment process. The volume reduction efficiency and compressive strength of sintered pellets were the major parameters for the evaluation. Major components of a simulated precipitate were some coagulated (oxy) hydroxides containing light elements, such as Si, Al, Mg, Ca, and zeolite particles. Green pellets compressed to around 100 MPa were heated at a range of 750~850°C to synthesize sintered pellets. It was observed that the volume reduction percentages were higher than 50% in the appropriate sintering conditions. The volume reduction was caused by the reduction of void space between particles, which is an evidence of partial glassification and ceramization of the precipitates. This result can also be attributed to conversion reactions of zeolite particles into other minerals. The compressive strength ranged from 6 to 19 MPa. These results also showed a significant correlation with the volume reduction of sintered body. Although our lab-scale experiments showed many benefits of sintering for the precipitates, optimized conditions are needed for large-scale practical applications. Evaluation of sintering characteristics as a function of pellet size and further testing will be conducted in the future.
        2.
        2022.10 구독 인증기관·개인회원 무료
        In a nuclear power plant, the activated corrosion products are deposited on the reactor coolant system. The activated corrosion products must be removed to reduce the radiation exposure to workers before maintaining or decommissioning of the nuclear power plant. In order to remove the remove the activated duplex oxide layer generated on the reactor coolant system in the pressurized water reactor (PWR), the Cyclic SP (Sulfuric acid/Permanganate)-HyBRID (Hydrazine Based Reductive metal Ion Decontamination) process developed by KAERI (Korea Atomic Energy Research Institute) can be used. After applying the Cyclic SP-HyBRID process, a sulfate-rich waste powder containing the radionuclide is generated, and the radioactive powder has to be stabilized for final disposal. In the previous study, it was confirmed that the low-temperature sintering method can be applied to immobilize the sulfate-rich waste powder. Thus, immobilization of the Cyclic SP-HyBRID process waste powder was carried out by the low-temperature sintering method using a low melting point glass, and the physicochemical and radiological characteristics of a waste form were evaluated in this study. As a result, the compressive strength of the waste form increased with increasing sintering temperature and sintering time. It is considered that the result was caused by the difference in the band gap between the bismuth borate and zinc borate, which are the products during the sintering process. It was verified that the physical stability was maintained after the 107 Gy of irradiation test. In addition, it was confirmed that the radioactive metal hydroxides contained in the waste powder converted to metal oxide forms, which have the lower solubility, at the sintering temperature. Finally, the waste form was evaluated as a low-level radioactive waste from the concentration of radionuclides contained in the waste form.
        3.
        2022.05 구독 인증기관·개인회원 무료
        Sulfate-rich waste powder containing a radioactive nuclide is generated from chemical decontamination process and radioactive liquid waste treatment using ion exchange resin. The radioactive sulfate-rich waste powder should be stabilized for final disposal. The techniques for immobilization of the radioactive sulfate-rich waste powder such as hydraulic cement, geopolymer, and iron phosphate glass have been applied, however, there are limitation in these techniques. Firstly, the hydraulic cement cannot applied to the wastes containing high concentration of sulfate because the expansion, cracks, and disintegration can be happened in the waste form. Geopolymer has a low density although they can be used as a good binder. The iron phosphate glass can be utilized, however, a considerable amount of SO2 gas is emitted due to the high sintering temperature. In this study, immobilization of radioactive sulfate-rich waste powder was carried out to resolve above problems by applying low temperature sintering method using a low-melting glass. As a result, it was confirmed that the waste form has a high bulk density. The compressive strength of the waste form was over 40 MPa, which is higher than the acceptance criteria (≥ 3.44 MPa). From ANS 16.1 test, it was verified that the waste form met the acceptance criteria of the leachability index (≥ 6). It was also confirmed that the waste form was chemically durable through product consistency test (PCT). In addition, the chemical stabilities of waste forms were compared following the sintering condition and the composition of the waste forms. The difference of the chemical stability was explained by difference in the abundance of chemical form obtained from the sequential extraction test.
        4.
        2021.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The Mn-Zn ferrite powders were prepared by high energy ball milling, then compacted and sintered at various temperatures to assess their sintering behavior and magnetic properties. The initial ferrite powders were spherical in shape with the size of approximately 70 m. After 3 h of ball milling at 300 rpm, aggregated powders ~230 nm in size and composed of ~15 nm nanoparticles were formed. The milled powders had a density of ~70 % when compacted at 490 MPa for 3 min. In the samples subsequently sintered at 1,273 K ~ 1,673 K for 3 h, the MnZnFe2O4 phase was detected. The density of the sintered samples had a tendency to increase with increasing sintering temperature up to 1,473 K, which produced the highest density of 98 %. On the other hand, the sample sintered at 1,373 K had the highest micro-hardness of approximately 610 Hv, which is due to much finer grains.
        4,000원
        5.
        2018.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The impact of different mixing methods and sintering temperatures on the microstructure and piezoelectric properties of PZNN-PZT ceramics is investigated. To improve the sinterability and piezoelectric properties of these ceramics, the composition of 0.13Pb((Zn0.8Ni0.2)1/3Nb2/3)O3-0.87Pb(Zr0.5Ti0.5)O3 (PZNN-PZT) containing a Pb-based relaxor component is selected. Two methods are used to create the powder for the PZNN-PZT ceramics. The first involves blending all source powders at once, followed by calcination. The second involves the preferential creation of columbite as a precursor, by reacting NiO with Nb2O5 powder. Subsequently, PZNN-PZT powder can be prepared by mixing the columbite powder, PbO, and other components, followed by an additional calcination step. All the PZNNPZT powder samples in this study show a nearly-pure perovskite phase. High-density PZNN-PZT ceramics can be fabricated using powders prepared by a two-step calcination process, with the addition of 0.3 wt% MnO2 at even relatively low sintering temperatures from 800℃ to 1000℃. The grain size of the ceramics at sintering temperatures above 900℃ is increased to approximately 3 μm. The optimized PZNN-PZT piezoelectric ceramics show a piezoelectric constant (d33) of 360 pC/N, an electromechanical coupling factor (kp) of 0.61, and a quality factor (Qm) of 275.
        4,000원
        6.
        2017.11 구독 인증기관·개인회원 무료
        In membrane applications for wastewater treatment, polymeric membranes are dominant due to their processbility and low cost. To enlarge the membrane application in industrial effluent treatment, membrane materials with high mechanical and chemical tolerance should be needed. Although ceramics such as alumina would be good options for harsh environmental conditions, high cost and complex production methods hinder the application of ceramic membranes. Here, we demonstrate the preparation of cost-effective, robust alumina hollow fiber membranes (HFMs). Alumina HFMs prepared with phase inversion method followed by sintering showed narrow pore size distribution. Also, characteristics of the membrane can be easily tuned by controlling spinning and post treatment conditions.
        7.
        2016.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, bulk nickel-carbon nanotube (CNT) nanocomposites are synthesized by a novel method which includes a combination of ultrasonication, electrical explosion of wire in liquid and spark plasma sintering. The mechanical characteristics of the bulk Ni-CNT composites synthesized with CNT contents of 0.7, 1, 3 and 5 wt.% are investigated. X-ray diffraction, optical microscopy and field emission scanning electron microscopy techniques are used to observe the different phases, morphologies and structures of the composite powders as well as the sintered samples. The obtained results reveal that the as-synthesized composite exhibits substantial enhancement in the microhardness and values more than 140 HV are observed. However an empirical reinforcement limit of 3 wt.% is determined for the CNT content, beyond which, there is no significant improvement in the mechanical properties.
        4,000원
        8.
        2016.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Composite materials consisting of pure aluminum matrix reinforced with different amounts of graphite particles are successfully fabricated by mechanical ball milling and spark plasma sintering (SPS) processes. The shrinkage rates of the composite powders vary with the amount of graphite particles and the lowest shrinkage value is observed for the composite with the highest amount of graphite particles. The current slopes of time increase with increase in the amount of graphite particles whereas the current slopes of temperature show the opposite trend. The highest thermal conductivity is achieved for the composite with the least amount of graphite particles. Therefore, the thermal properties of the composite materials can be controlled by controlling the amount of the graphite particles during the SPS process.
        4,000원
        9.
        2016.02 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        In this study, 5 um sized ZrSiO4 was ground to 1.9 um, 0.3 um, and 0.1 um sized powders by wet high energy milling process, and the sintering characteristics were observed. Pure ZrSiO4 itself can-not be sintered to these levels of theoretical density, but it was possible to sinter ZrSiO4 powder of nano-scale size of, −0.1 um to the theoretical density and to lower the sintering temperature for full density. Also, the decomposition of ZrSiO4 with a size in the micron range resulted in the formation of monoclinic ZrO2; however, in the nano sized range, the decomposition resulted in the tetragonal phase of ZrO2. So, it was possible to improve the sintering characteristics of nano-sized ZrSiO4 powders.
        4,000원
        10.
        2015.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, ternary compound Max Phase Ti2AlC material was mixed by 3D ball milling as a function of ball milling time. More than 99.5 wt% pure Ti2AlC was synthesized by using spark plasma sintering method at 1000, 1100, 1200, and 1300oC for 60 min. The material characteristics of synthesized samples were examined with relative density, hardness, and electrical conductivity as a function of sintering temperature. The phase composition of bulk was identified by X-ray diffraction. On the basis of FE-SEM result, a terraced structures which consists of several laminated layers were observed. And Ti2AlC bulk material obtained a vickers hardness of 5.1 GPa at the sintering temperature of 1100oC.
        4,000원
        11.
        2015.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        SKD11 (ASTM D2) tool steel is a versatile high-carbon, high-chromium, air-hardening tool steel that is characterized by a relatively high attainable hardness and numerous, large, chromium rich alloy carbide in the microstructure. SKD11 tool steel provides an effective combination of wear resistance and toughness, tool performance, price, and a wide variety of product forms. Adding of CNTs increased the performance of mechanical properties more. 1, 3 vol% CNTs was dispersed in SKD11 matrix by mechanical alloying. SKD11 carbon nanocomposite powder was sintered by spark plasma sintering process. FE-SEM, HR-TEM and Raman analysis were carried out for the SKD11 carbon nanocomposites.
        4,000원
        12.
        2013.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Spherical Ti-6Al-4V powders in the size range of 250 and 300 µm were uniformly doped with nano-sized hydroxyapatite (HAp) powders by Spex milling process. A single pulse of 0.75-2.0 kJ/0.7 g of the Ti-6Al-4V powders doped with HAp from 300 mF capacitor was applied to produce fully porous and porous-surfaced Ti-6Al-4V implant compact by electro-discharge-sintering (EDS). The solid core was automatically formed in the center of the compact after discharge and porous layer consisted of particles connected in three dimensions by necks. The solid core increased with an increase in input energy. The compressive yield strength was in a range of 41 to 215 MPa and significantly depended on input energy. X-ray photoelectron spectroscopy and energy dispersive x-ray spectrometer were used to investigate the surface characteristics of the Ti-6Al-4V compact. Ti and O were the main constituents, with smaller amount of Ca and P. It was thus concluded that the porous-surfaced Ti-6Al-4V implant compacts doped with HAp can be efficiently produced by manipulating the milling and electro-discharge-sintering processes.
        4,000원
        13.
        2013.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In the present work, 6061 Al-B4C sintered composites containing different B4C contents were fabricated and their characteristic were investigated as a function of sintering temperature. For this, composite powders and their compacts with B4C various contents from 0 to 40 wt.% were fabricated using a planetary ball milling equipment and cold isostatic pressing, respectively, and then they were sintered in the temperature ranges of 580 to 660o C. Above sin- tering temperature of 640o C, real density was decreased due to the occurrence of sweat phenomena. In addition, it was realized that sinterability of 6061Al-B4C composite material was lowered with increasing B4C content, resulting in the decrease in its real density and at the same time in the increment of porosity.
        4,000원
        14.
        2010.11 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The liquid-phase sintering method was used to prepare a glass lens forming core composed of SiC-Al2O3-Y2O3. Spark plasma sintering was used to obtain dense sintered bodies. The sintering characteristics of different SiC sources and compositions of additives were studied. Results revealed that, owing to its initial larger surface area, α-SiC offers sinterability that is superior to that of β-SiC. A maximum density of 3.32 g/cm3 (theoretical density [TD] of 99.7%) was obtained in α-SiC-10 wt% (6Al2O3-4Y2O3) sintered at 1850˚C without high-energy ball milling. The maximum hardness and compression stress of the sintered body reached 2870 Hv and 1110 MPa, respectively. The optimum ultra-precision machining parameters were a grinding speed of 1243 m/min, work spindle rotation rate of 100 rpm, feed rate of 0.5 mm/min, and depth of cut of 0.2 μm. The surface roughnesses of the thus prepared final products were Ra = 4.3 nm and Rt = 55.3 nm for the aspheric lens forming core and Ra = 4.4 nm and Rt = 41.9 for the spherical lens forming core. These values were found to be sufficiently low, and the cores showed good compatibility between SiC and the diamond-like carbon (DLC) coating material. Thus, these glass lens forming cores have great potential for application in the lens industry.
        4,200원
        15.
        2009.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Development of nanoparticulate materials technology is essential to processing of highly functional nanoparticulate materials and components with small and complex shape. In this paper, the effect of particle size on surface roughness and shrinkage of sintered Fe-8 wt%Ni nanopowder components fabricated by PIM were investigated. The Fe-8 wt%Ni nanopowder was prepared by hydrogen reduction of ball-milled FeO-NiO powder. Feedstock of nanopowder prepared with the wet-milled powder was injection molded into double gear shaped part at 120. After sintering, the sintered part showed near full densified microstructure having apparently no porosity (98%T.D.). Surface roughness of sintered bulk using nanopowder was less than 815 nm and it was about seven times lower than 7 m that is typically obtainable from a sintered part produced from PIM.
        4,000원
        16.
        2009.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Fe based (FeCSiBPCrMoAl) amorphous powder, which is a composition of iron blast cast slag, were produced by a gas atomization process, and sequently mixed with ductile Cu powder by a mechanical ball milling process. The Fe-based amorphous powders and the Fe-Cu composite powders were compacted by a spark plasma sintering (SPS) process. Densification of the Fe amorphous-Cu composited powders by spark plasma sintering of was occurred through a plastic deformation of the each amorphous powder and Cu phase. The SPS samples milled by AGO-2 under 500 rpm had the best homogeneity of Cu phase and showed the smallest Cu pool size. Micro-Vickers hardness of the as-SPSed specimens was changed with the milling processes.
        4,000원
        17.
        2009.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This research was performed to evaluate heavy metal leaching characteristics of the sludge from paper mill process with sintering temperature. Heavy metal leaching of the sludge was characterized with Korean Leaching Test and Toxicity Characteristic Leaching Procedure. The test sludge was composed of 70.72% of moisture, 9.5% of volatile solids and 9.76% of fixed solids. As a result of XRF analysis, Fe was the highest inorganic element in approximately 83%, which implies the recycling possibility of the sludge in reuse of Fenton chemicals and artificial lightweight aggregate. Leaching of heavy metals from sintered sludge was lower than the dry ones. However, there was no significant difference in leaching characteristics between the sludges sintered at 350℃ and 650℃. Zn and Fe were leached more greatly in TCLP and KLT methods respectively.
        4,000원
        18.
        2008.07 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Effect The effect of sintering additives (SiO2, Al2O3, Clay) on the mechanical characteristics of sintered zircon was investigated. 1 vol% of additives in zircon powder was was sintered at 120~1500˚C, the mechanical characteristics were measured, and microstructure analysis were was conducted. Al2O3 and clay additions increase the formation of monoclinic and tetragonal-ZrO2 formation. An addition of SiO2 addition suppressed the formation of tetragonal-ZrO2 formation., The A specimen sintered at 1400˚C showed the a density of 4.05 g/cm3 and the a microhardness of 1120 HV, respectively.
        4,000원
        19.
        2007.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Characteristics of Al-based composites with waste stainless steel short fiber, fabricated by magnetic pulsed compaction and sintering were investigated. The compacts prepared by magnetic pulsed compaction showed high relative density and homogeneous microstructure compared with that by conventional press compaction. The relative density of sintered composites at for 1 h exhibited the same value with compacts and decreased with increase in STS short fiber content. The reaction between Al and STS phase was confirmed by the microstructural analysis using EDS. The sintered composites, prepared by magnetic pulsed compaction, showed increased hardness value with increasing STS fiber content. Maximum yield strength of 100 MPa and tensile strength of 232 MPa were registered in the AI-based composite with 30 vol% STS short fiber.
        4,000원
        1 2 3