검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 39

        1.
        2024.06 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        In this work, we investigated the photo-degradation performance of MnO2-SiC fiber-TiO2 (MnO2-SiC-TiO2) ternary nanocomposite according to visible light excitation utilizing methylene blue (MB) and methyl orange (MO) as standard dyes. The photocatalytic physicochemical characteristics of this ternary nanocomposite were described by X-ray diffraction (XRD), scanning electron microscopy (SEM), tunneling electron microscopy (TEM), ultraviolet-visible (UV-vis), diffuse reflectance spectroscopy (DRS), electrochemical impedance spectroscopy (EIS), photocurrent and cyclic voltammogram (CV) test. Photolysis studies of the synthesized MnO2-SiC-TiO2 composite were conducted using standard dyes of MB and MO under UV light irradiation. The experiments revealed that the MnO2-SiC-TiO2 exhibits the greatest photocatalytic dye degradation performance of around 20 % with MB, and of around 10 % with MO, respectively, within 120 min. Furthermore, MnO2-SiC-TiO2 showed good stability against photocatalytic degradation. The photocatalytic efficiency of the nanocomposite was indicated by the adequate photocatalytic reaction process. These research results show the practical application potential of SiC fibers and the performance of a photocatalyst composite that combines these fibers with metal oxides.
        4,000원
        2.
        2023.05 구독 인증기관·개인회원 무료
        Mobility of radionuclides (RNs) in natural water systems can be increased by complex formation with organic materials. In alkaline cement pore-water conditions, cellulose materials in radwastes such as woods and papers are degraded fast to small organic materials. As a major cellulose degradation product, isosaccharinate (ISA) has been paid attention recently due to its effect on facilitating RNs migration. ISA contains a carboxyl and four hydroxyl functional groups, which cooperatively interact to form chelating bonds with positively charged radionuclides. In our previous study, we determined thermodynamic formation constants, reaction enthalpy and entropy of trivalent americium complexes with ISA, Am(ISA)n (3-n)+ (n=1, 2), in weak acidic condition by conducting temperature-dependent UVVis absorption spectroscopy. Based on those thermodynamic constants along with the experimental results from time-resolved laser induced fluorescence spectroscopy and DFT calculations, we suggested two different chelating-modes of ISA on Am(III). It is more relevant to study Am(III)-ISA complexation under alkaline conditions around pH 12.5, which correspond to the pore-water condition of calciumsilicate- hydrate. Under the alkaline conditions, deprotonated hydroxyl groups of ISA can form more strong interactions with Am. Aquatic hydroxide group can also act as a ligand to form ternary Am(III) -ISA-OH complexes. In this study, absorption spectra of Am-ISA systems were monitored with two variations: first, pH variation (5.5–13) in the presence of constant 30 mM ISA, and second, ISA concentration variation (20 μM – 30 mM) at constant pH of 12.5. As increasing the pH at constant 30 mM ISA, absorption spectra of Am(ISA)2 + were red-shifted from 506.3 to 509.5 nm. The samples showed stable absorption spectra over 30 days. On the other hand, samples with lower ISA concentrations below 10 mM at pH 12.5, showed gradual decrease in the absorbance as sample aging time. By examining filtrates after ultrafiltration (1 kDa), we confirmed that aqueous Am(III)-ISA complexes were formed in the presence of 30 mM ISA at pH 12.5, while colloidal particles and precipitations were formed in the conditions of ISA concentrations lower than 10 mM. In this presentation, we will discuss about probable ternary complex forms of Am(III)-ISA-OH, colloidal forms, and solubility of Am(III) as a function of ISA concentration under alkaline conditions. Absorption and luminescence spectroscopic properties of the Am(III)-ISA-OH ternary system will also be presented.
        3.
        2023.03 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        There is a gap in our understanding of the behavior of fused and molten fuel salts containing unavoidable contamination, such as those due to fabrication, handling, or storage. Therefore, this work used calorimetry to investigate the change in liquidus temperature of PuCl3, having an unknown purity and that had been in storage for several decades. Further research was performed by additions of NaCl, making several compositions within the binary system, and summarizing the resulting changes, if any, to the phase diagram. The melting temperature of the PuCl3 was determined to be 746.5°C, approximately 20°C lower than literature reported values, most likely due to an excess of Pu metal in the PuCl3 either due to the presence of metallic plutonium remaining from incomplete chlorination or due to the solubility of Pu in PuCl3. From the melting temperature, it was determined that the PuCl3 contained between 5.9 to 6.2mol% Pu metal. Analysis of the NaCl-PuCl3 samples showed that using the Pu rich PuCl3 resulted in significant changes to the NaCl-PuCl3 phase diagram. Most notably an unreported phase transition occurring at approximately 406°C and a new eutectic composition of 52.7mol% NaCl–38.7mol% PuCl3–2.5mol% Pu which melted at 449.3°C. Additionally, an increase in the liquidus temperatures was seen for NaCl rich compositions while lower liquidus temperatures were seen for PuCl3 rich compositions. It can therefore be concluded that changes will occur in the NaCl-PuCl3 binary system when using PuCl3 with excess Pu metal. However, melting temperature analysis can provide valuable insight into the composition of the PuCl3 and therefore the NaCl-PuCl3 system.
        4,000원
        4.
        2022.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        In existing ceramic mold manufacturing processes, inorganic binder systems (Si-Na, two-component system) are applied to ensure the effective firing strength of the ceramic mold and core. These inorganic binder systems makes it possible to manufacture a ceramic mold and core with high dimensional stability and effective strength. However, as in general sand casting processes, when molten metal is injected at room temperature, there is a limit to the production of thin or complex castings due to reduced fluidity caused by the rapid cooling of the molten metal. In addition, because sodium silicate generated through the vitrification reaction of the inorganic binder is converted into a liquid phase at a temperature of 1,000 °C. or higher, it is somewhat difficult to manufacture parts through high-temperature casting. Therefore, in this study, a high-strength ceramic mold and core test piece with effective strength at high temperature was produced by applying a Si-Na-Ti three-component inorganic binder. The starting particles were coated with binary and ternary inorganic binders and mixed with an organic binder to prepare a molded body, and then heat-treated at 1,000/1,350/1,500 °C to prepare a fired body. In the sample where the two-component inorganic binder was applied, the glass was liquefied at a temperature of 1,000 °C or higher, and the strength decreased. However, the firing strength of the ceramic mold sample containing the three-component inorganic binder was improved, and it was confirmed that it was possible to manufacture a ceramic mold and core via high temperature casting.
        4,000원
        6.
        2022.06 구독 인증기관 무료, 개인회원 유료
        광전기화학 성능을 향상시키기 위해 각 ZnO, ZnSe과 g-C3N4 소재의 장점을 살리도록 3성분계 적층 구조를 디자 인했다. 용액공정으로 FTO 기판위에서 ZnO 나노로드 어레이가 성장하도록 한 후 ZnO표면에 Se을 부착시켜 ZnO표면에 서 ZnSe층이 형성 되도록 이온 치환법을 도입하였다. ZnO/ZnSe 나노로드 위에 g-C3N4 층을 스핀코팅 한 후 각 층이 화 학적 접합이 되도록 질소 분위기 하에서 열처리를 하였다. AM 1.5G, 0.5 V 외부전압하에서 각 적층구조별로 광전기화학 적 전류밀도를 측정하였고 비교 결과 ZnO/ZnSe/g-C3N4 나노로드가 ZnO 및 ZnO/ZnSe 나노로드에 비하여 보다 높은 광 전류 밀도가 측정되었다. 수직 정렬된 ZnO 육각 프리즘형태는 큰 비표면적과 축 방향을 따라 전자 흐름을 원활히 하고, ZnSe 층은 비표면적과 광흡수 범위를 더욱 넗히는 효과를 가져왔다. 이로 인하여 ZnO/ZnSe/g-C3N4 삼원 접합 전극의 향상된 성능은 가시광선 흡수범위 확장, 전하 분리 강화 및 전자 전도도 향상으로 인한 시너지 효과에 기인되는 것으로 판단된다.
        4,000원
        7.
        2022.05 구독 인증기관·개인회원 무료
        A molten salt reactor (MSR) that uses molten salt mixtures as nuclear liquid fuel has recently received much attention due to its inherent safety. Various fluoride and chloride salt mixtures are considered as fluid fuel for MSRs. Among those, NaCl-MgCl2-UCl3 system is the one of the most promising candidates for molten salt fast reactor. The comprehensive information on thermo-physical properties such as density, viscosity, heat capacity and thermal conductivity are fundamental to MSR design development, but experimental data for NaCl-MgCl2-UCl3 system are unknown to the best of our knowledge. In this study, we estimated the thermophysical properties of NaCl-MgCl2-UCl3 system. The properties were calculated by mole fraction additive method using reliable experimental data from pure salt system. Other methods, such as rule of additivity of molar volume for density, modified Dulong-Petit method for heat capacity, and Rao-Turnbull prediction and Ignatieve-Khokolve correlation for thermal conductivity, have also been applied. Estimated values for the properties were compared with each other as well as available binary experimental data.
        8.
        2021.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        In the flux used in the batch galvanizing process, the effect of the component ratio of NH₄Cl to ZnCl₂ on the microstructure, coating adhesion, and corrosion resistance of Zn-Mg-Al ternary alloy-coated steel is evaluated. Many defects such as cracks and bare spots are formed inside the Zn-Mg-Al coating layer during treatment with the flux composition generally used for Zn coating. Deterioration of the coating property is due to the formation of AlClx mixture generated by the reaction of Al element and chloride in the flux. The coatability of the Zn-Mg-Al alloy coating is improved by increasing the content of ZnCl2 in the flux to reduce the amount of chlorine reacting with Al while maintaining the flux effect and the coating adhesion is improved as the component ratio of NH4Cl to ZnCl2 decreases. Zn-Mg-Al alloy-coated steel products treated with the optimized flux composition of NH₄Cl•3ZnCl₂ show superior corrosion resistance compared to Zn-coated steel products, even with a coating weight of 60 %.
        4,000원
        9.
        2021.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES : The objective of this study is to evaluate the mechanical properties of ternary blended cement concrete incorporated with pulverized reject ash (PRA) or pulverized fuel ash (PFA) based on a comparison with those of ordinary Portland cement (OPC) concrete. METHODS : To produce the concretes, the level of OPC replacement is set at 60%, which comprises 30%~45% ground granulate blast furnace slag and 15%~25% of fly ash (FA). The FA can be categorized into PFA, 4PRA (fineness 3,930 cm2/g3), and 8PRA (fineness 7,840 cm2/g3). The compressive strength, surface electric resistivity, initial absorption coefficient, and chloride ion penetrability of OPC and the ternary blended cement concrete are measured at predetermined periods after water curing. RESULTS : It is discovered that the mechanical properties of concrete with 8PRA are better than those of OPC concrete. The performance of 4PRA concrete is worse than that of 8PRA concrete, indicating that the fineness of the PRA can affect the mechanical properties of the ternary blended cement concrete. CONCLUSIONS : The use of PRA is feasible for the production of ternary blended cement concrete, provided that the appropriate mix design and grinding technology are used.
        4,000원
        10.
        2021.05 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Al-Cr-Si ternary quench ribbons are fabricated using a single roll method and investigated for their structural and thermal properties. In particular, the sinterability is examined by pulse current sintering to obtain the following results. The Al74Cr20Si6 composition becomes a quasicrystalline single phase; by reducing the amount of Cr, it becomes a twophase mixed structure of Al phase and quasicrystalline phase. As a result of sintering of Al74Cr20Si6, Al77Cr13Si10 and Al90Cr6Si4 compositions, the sintering density is increased with the large amount of Al phase; the sintering density is the highest in Al90Cr6Si4 composition. In addition, as a result of investigating the effects of sintering temperature and pressurization on the sintered density of Al90Cr6Si4, a sintered compact of 99% or more at 513 K and 500 MPa is produced. In particular, since the Al-Cr-Si ternary crystal is more thermally stable than the Al-Cr binary quaternary crystal, it is possible to increase the sintering temperature by about 100 K. Therefore, using an alloy of Al90Cr6Si4 composition, a sintered compact having a sintered density of 99 % or more at 613 K and 250 MPa can be manufactured. It is possible to increase the sintering temperature by using the alloy system as a ternary system. As a result, it is possible to produce a sintered body with higher density than that possible using the binary system, and at half the pressure compared with the conventional Al-Cr binary system.
        4,000원
        13.
        2018.09 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Lead free (1-x)(0.675BiFeO3-0.325BaTiO3)- xLiTaO3 (BFBTLT, x = 0, 0.01, 0.02, and 0.03, with 0.6 mol% MnO2 and 0.4 mol% CuO) were prepared by a solid state reaction method, followed by air quenching and their crystalline phase, morphology, dielectric, ferroelectric and piezoelectric properties were explored. An X-ray diffraction study indicates that lithium (Li) and tantalum (Ta) were fully incorporated in the BFBT materials with the absence of any secondary phases. Dense ceramic samples (> 92 %) with a wide range of grain sizes from 3.70 μm to 1.82 μm were obtained in the selected compositions (0 ≤ x ≤ 0.03) of BFBTLT system. The maximum temperatures (Tmax) were mostly higher than 420 oC in the studied composition range. The maximum values of maximum polarization (Pmax ≈ 31.01 μC/cm2), remnant polarization (Prem ≈ 22.82 μC/cm2) and static piezoelectric constant (d33 ≈ 145 pC/N) were obtained at BFBT-0.01LT composition with 0.6 mol% MnO2 and 0.4 mol% CuO. This study demonstrates that the high Tmax and d33 for BFBTLT ceramics are favorable for industrial applications.
        4,000원
        15.
        2013.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES : The purpose of this study is to evaluate the durability of ternary blended concrete mixtures adding ultra fine admixture. METHODS : From the literature review, crack was considered as the main distress failure criterion on concrete bridge deck pavement. To reduce the initial crack development due to drying shrinkage, CSA expansion agent and shrink reduction agent were used to ternary blended concrete mixtures as a admixture. Laboratory tests including chloride ion penetration test, surface scaling test, rapid freeze & thaw resistance test, non restrained drying shrinkage and restrained drying shrinkage test were conducted to verify the durability of ternary blended concrete mixtures. RESULTS : Based on the test results, proposed mixtures were verified as high qualified durable materials. Expecially initial drying shrinkage crack was not occurred in ternary blended concrete mixtures with CSA expansion agent. CONCLUSIONS : It is concluded that the durability of proposed ternary blend concrete mixture was acceptable to apply for the concrete bridge deck pavement.
        4,000원
        16.
        2013.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES : This study is to evaluate ASR(alkali silica reactivity) resistance of ternary blended binder adding ultra fine mineral admixture. METHODS : This study analyzes ASR expansion using ASTM C 1260 and 1567. RESULTS : This study showed that the fineness of mineral admixture had no effect on ASR expansion. The expansion of ternary blended binder(UFFA 20%+FGGBS 10%) were below 0.1%, and this binder met the ASR standard. Also when adding the CSA expansion agent, ASR expansion slightly decreased. The expansion of latex modified mixture increased by 80% comparing plain mixture. CONCLUSIONS : Ternary blended binder met the ASR standard, and this binder is available in concrete bridge deck overlay.
        4,000원
        17.
        2012.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, we mainly focus on the study of densification of gas-atomized Cu-50 wt.%In-13 wt.%Ga alloy powder without occurrence of crack during the forming process. Cu-50 wt.%In-13 wt.%Ga alloy powder was consolidated by sintering and rolling processes in order to obtain high density. The phase and microstructure of formed materials were examined by X-ray diffraction (XRD), scanning electron microscopy (SEM) and optical microscopy (OM), respectively. Warm rolling using copper can result in the improvement of density. The specimen obtained with 80% of rolling reduction ratio at using cooper can have the highest density of .
        4,000원
        18.
        2012.06 구독 인증기관 무료, 개인회원 유료
        용해성이 우수하며, 강한 electron-withdrawing 특성을 나타내는 cyano group 을 가지는, 새로운 전자acceptor 재료인 malononitrile 유도체 (2-(2,6-bis((E)-4-tert-butylstyryl)-4H-pyran-4-ylid-ene)malononitrile (t-BuPM)을 합성하였다. 합성된 acceptor 재료 t-BuPM을 donor와 acceptor 재료로 널리 사용되고 있는 poly[2-Methoxy-5-(2-EthylHexyloxy)-P-Phenylene-Vinylene](MEH-PPV)와 (6)-1-(3-(methoxycarbonyl)propyl)-{5}-1-1-phenyl-[5,6]-fullerene (PCBM)과 함께ternary blend system으로 유기 태양전지 소자를 제작하였다. 소자는 ITO/PEDOT:PSS/MEH-PPV:t-BuPM:PCBM/Al 구조와 같이 제작하여 광전변환 특성을 측정하였다. 합성된 재료의 HOMO와LUMO energy level은 -5.97,-3.49eV로 측정되었으며, t-BuPM을 사용하여 ternary blend system 으로 제작된소자의 에너지변환 효율은 AM 1.5G, 1 sun 조건(100mA/cm2)에서 1.85%로 측정되었다. Short circuit current density (Jsc)는 5.54mA/cm2, fillfactor(FF)는 41%, open circuit voltage(Voc)는 0.80 V로 측정되었다.
        4,000원
        19.
        2011.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구에서는 고로슬래그 미분말 및 플라이애시와 같은 광물질 혼화재를 사용한 친환경 고성능 3성분계 시멘트 콘크리트 교면 포장의 성능을 평가하기 위하여 실험을 하였다. 광물질 혼화재의 혼입률 변화에 따른 3성분계 시멘트 콘크리트의 최적배합을 찾기 위하여 압축강도 및 휨강도 시험을 하였으며 최적배합을 사용하여 내구성 시험인 염소이온 침투저항성, 동결융해, 박리 저항성, 균열 저항성 및 알칼리골재반응 시험으로 친환경 고성능 3성분계 시멘트 콘크리트 교면 표장의 내구성 평가 및 신 구 콘크리트의 부착력을 평가하기 위하여 부착강도 시험을 하였다. 시험결과, 시멘트 70%, 고로슬래그 미분말15% 및 플라이애시 15%의 배합 바인더에서 압축강도 및 휨강도가 우수하게 나타났으며 이를 최적배합으로 도출하였다. 실내 및 시험시공에서 최적 배합을 사용한 실험결과는 염소이온 침투 저항성, 동결융해 저항성, 표면박리 저항성, 알칼리골재 반응 억제 및 내마모성이 우수하게 나타났다. 또한, 특수 제작된 Polymer Cement Mortar(Brooming)를 사용한 신 구 콘크리트의 부착력에서도 우수한 성능을 나타냈다.
        4,000원
        20.
        2006.09 구독 인증기관·개인회원 무료
        Metallic compound of ternary Al-B-C system was prepared by mechanical alloying (MA) using Al, boron and graphite powders as starting materials. MA was carried out using Spex 8000 mixer/mill for 50 hours in an argon atmosphere without process control reagent such as methyl alcohol. The MA powders obtained were heat-treated in vacuum at the temperature of 873 and 1273 K for 5 hour. Pure ternary Al-B-C compound was obtained in the chemical content of Al:B:C=55:27:18. The ternary compound obtained in this study has a new phase whose crystal structure is not identified yet.
        1 2