This paper deals with desktop simulator which can be utilized for total assessment of safety in harbour manoeuvre on a personal computer. Current, wind and tug forces are treated as well as precise mathematical model of a ship for low advance speed including stopping behaviour with effect of water depth. By using the desktop simulator, the real time simulation of berthing and unberthing manoeuvres was applied to Pusan harbour as an example. It is concluded that the above simulation technique will be beneficial to assessment of ship's safety under the environmental conditions is harbour area.
The in situ observations and the seawater analyses were conducted in July and Auguse, 1996 for the purpose of evaluating the characteristics of seawater quality centered about eutrophication in Mokpo harbour. By applying the OECD standards of trophic classification to the parameters such as secchi depth, total inorganic nitrogen, phosphate phosphorus and chlorophyll-a, the trophic level of seawater in Mokpo harbour was evaluated to be in eutrophic state in summer. The estimation of pollution index by eutrophication showed the seawater quality of Mokpo harbour to deteriorate and fall under the regular grades. The results of eutrophic index estimation showed the high otentiality of red tide occurrence in Mokpo harbour.
In this study, some approximate theoretical solutions about oil spreading under the influence of gravitational and viscous forces have been derived from the viewpoint of energy conservation. The theoretical model which derived newly is in agreement with Toi's one derived from a different hypothesis, and shown to predict well the spreading distance of oil front at an initial step of outflow, but further study is necessary to evaluate the spreading distance after longer time
Each factor for the most effective electrolytic reaction in treating shipboard sewage was enhanced by means of batch electrolyitc reactor using DSA electrode. The effective clearance was 6mm and pH was 5-6. In such case, more than 20% of sea water concentration was needed to attain 90% of COD removal rate. The suspended solids was effectively removed by electro-floatation in proportion as charged current density. The nitrogen and posporous were effectively removed in the electrolytic device when mixed seawater.
For the effective treatment of shipboard sewage continuously, a non-diaphragm electrolytic treatment device using DSA type insoluble electrode, Ti/IrO2, anode and H-C metal cathode, was studied. The most effective electrolytic conditions were obtained when cell clearance, 6mm, pH 5-6 and the concentration of seawater, more than 20% as batch test results. The COD removal rate was varied in logarithmic function, showed as C=Coe-KE and the required current was E = A/QCo [A.min/mgCOD]. When the COD removal effeciency was more than 90%, the electrolytic reaction constant was 0.02.
To determine an operational condition of an adhesion-type oil skimmer, it is important to estimate the withdrawal rate for a given driving velocity of the skimmer and material properties of the oil. As a theoretical model for this problem the formation of an oil film on a vertically driven flat plate is investigated. The previous steady-state analysis made in the field of coating industry are reviewed. These studies have been made under the assumptions of small Reynolds and capillary number, which is adequate for coating process but not for oil skimming. An alternative analysis based on the linear stability theory is made. Comparisons with the experimental results reveal that the stability analysis gives a correct estimation of the withdrawal rate for high capillary number at which the previous theory losses its validity.
This paper develops a new heuristic, the Excursion Algorithm(EA), for constructing optimal designs for the experiments related with marine environment. The proposed EA consists of three parts: 1) construction of an initial feasible solution, 2) excursions over a bounded region, and 3) stopping rules. It is the second part that distinguishes the EA from the other existing heuristic methods. It turns out that excursions over a bounded feasible and/or infeasible region is effective in alleviating the risks of being trapped at a local optimum. Since this problem is formulated for the first time thesis, other heuristic algorithms do not exist. Therefore, global optimal solutions are obtained by complete enumeration for some cases, and the performance of the EA is evaluated in terms of solution quality. Computational results show that the proposed EA is effective in finding good(or, in many cases, global) solutions to the constrained optimal experimental design problems.