검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 194

        21.
        2020.10 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Effects of Sc addition on microstructure, electrical conductivity, thermal conductivity and mechanical properties of the as-cast and as-extruded Al-2Zn-1Cu-0.3Mg-xSc (x = 0, 0.25, 0.5 wt%) alloys are investigated. The average grain size of the as-cast Al-2Zn-1Cu-0.3Mg alloy is 2,334 μm; however, this value drops to 914 and 529 μm with addition of Sc element at 0.25 wt% and 0.5 wt%, respectively. This grain refinement is due to primary Al3Sc phase forming during solidification. The as-extruded Al-2Zn-1Cu-0.3Mg alloy has a recrystallization structure consisting of almost equiaxed grains. However, the asextruded Sc-containing alloys consist of grains that are extremely elongated in the extrusion direction. In addition, it is found that the proportion of low-angle grain boundaries below 15 degree is dominant. This is because the addition of Sc results in the formation of coherent and nano-scale Al3Sc phases during hot extrusion, inhibiting the process of recrystallization and improving the strength by pinning of dislocations and the formation of subgrain boundaries. The maximum values of the yield and tensile strength are 126 MPa and 215 MPa for the as-extruded Al-2Zn-1Cu-0.3Mg-0.25Sc alloy, respectively. The increase in strength is probably due to the existence of nano-scale Al3Sc precipitates and dense Al2Cu phases. Thermal conductivity of the as-cast Al-2Zn-1Cu-0.3Mg-xSc alloy is reduced to 204, 187 and 183 W/MK by additions of elemental Sc of 0, 0.25 and 0.5 wt%, respectively. On the other hand, the thermal conductivity of the as-extruded Al-2Zn-1Cu-0.3Mg-xSc alloy is about 200 W/Mk regardless of the content of Sc. This is because of the formation of coherent Al3Sc phase, which decreases Sc content and causes extremely high electrical resistivity.
        4,000원
        22.
        2020.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, epoxy composites were reinforced with multi-walled carbon nanotubes and fused silica particles, dispersing the fillers within the epoxy resin based on a simple physical method using only shear mixing and ultrasonication. The hybrid composite specimens with 0.6 wt% of carbon nanotubes and 50 wt% of silica particles showed improved mechanical properties, with increase in tensile strength and Young’s modulus up to 12 and 37%, respectively, with respect to those of the baseline specimens. The experimental results showed that the low thermal expansion of the silica particles improved the thermal stability of the composites compared with that of the baseline specimen, whereas the thermal expansion slightly increased, due to the increased heat transfer from the exterior to the interior of specimens by the carbon nanotube filler. The coefficient of thermal expansion of the hybrid composite specimen reinforced with 0.6 wt% of carbon nanotubes and 50 wt% of silica particles was decreased by 25%, and the thermal conductivity was increased by about 84%, compared with those of the baseline specimen.
        4,500원
        23.
        2020.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Carbon short fibers/copper composites with different carbon short fiber contents up to 15 wt.% as reinforcements are prepared to investigate the influence of the carbon short fiber surface coating on the microstructure, density, and electrical properties of the carbon short fibers/copper composites. The carbon short fibers were surface treated by acid functionalization followed by alkaline treatment before the coating process. It was observed from the results that coated type copper nanoparticles were deposited on the surface of the carbon short fibers. The surface treated carbon short fibers were coated by copper using the electroless deposition technique in the alkaline tartrate bath by using formaldehyde as a reducing agent of the copper sulfate. The produced coated carbon short fibers/copper composite powders were cold compacted at 600 MPa, and then sintered at 875 °C for 2 h under (hydrogen/nitrogen 1:3) atmosphere. A reference copper sample was also prepared by the same method to compare between the properties of pure copper and the carbon short fibers/copper composites. The phase composition, morphology, and microstructure of the prepared carbon short fibers/copper composite powders as well as the corresponding carbon short fibers/copper composites were investigated using X-ray diffraction analysis (XRD) and scanning electron microscope (SEM) equipped with an energy-dispersive spectrometer (EDS), respectively. The density and the electrical resistivity of the sintered composites were measured. It was observed from the results that the density was decreased; however, the electrical resistivity was increased by increasing the carbon short fibers wt.%.
        4,300원
        24.
        2020.04 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Amorphous In-Ga-Zn-O (a-IGZO) thin film transistors, because of their relatively low mobility, have limits in attempts to fulfill high-end specifications for display backplanes. In-Zn-O (IZO) is a promising semiconductor material for high mobility device applications with excellent transparency to visible light region and low temperature process capability. In this paper, the effects of working pressure on the physical and electrical properties of IZO films and thin film transistors are investigated. The working pressure is modulated from 2 mTorr to 5 mTorr, whereas the other process conditions are fixed. As the working pressure increases, the extracted optical band gap of IZO films gradually decreases. Absorption coefficient spectra indicate that subgap states increase at high working pressure. Furthermore, IZO film fabricated at low working pressure shows smoother surface morphology. As a result, IZO thin film transistors with optimum conditions exhibit excellent switching characteristics with high mobility (≥ 30cm2/Vs) and large on/off ratio.
        4,000원
        25.
        2020.03 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The effects of fast neutron irradiation on the electrical and optical properties of Li (3 at%) doped ZnSnO (ZTO) thin films fabricated using a sol-gel process are investigated. From the results of Li-ZTO TFT characteristics according to change of neutron irradiation time, the saturation mobility is found to increase and threshold voltage values shift to a negative direction from 1,000 s neutron irradiation time. X-ray photoelectron spectroscopy analysis of the O 1s core level shows that the relative area of oxygen vacancies is almost unchanged with different irradiation times. From the results of band alignment, it is confirmed that, due to the increase of electron carrier concentration, the Fermi level (EF) of the sample irradiated for 1,000 s is located at the position closest to the conduction band minimum. The increase in electron concentration is considered by looking at the shallow band edge state under the conduction band edge formed by fast neutron irradiation of more than 1,000 s.
        4,000원
        26.
        2020.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this work, the electrical explosion of wire in liquid and subsequent spark plasma sintering (SPS) was introduced for the fabrication of Ni-graphite nanocomposites. The fabricated composite exhibited good enhancements in mechanical properties, such as yield strength and hardness, but reduced the ductility in comparison with that of nickel. The as-synthesized Ni-graphite (5 vol.% graphite) nanocomposite exhibited a compressive yield strength of 275 MPa (about 1.6 times of SPS-processed monolithic nickel ~170 MPa) and elongation to failure ~22%. The hardness of Nigraphite composite had a value of 135.46 HV, which is about 1.3 times higher than that of pure SPS-processed Ni (105.675 HV). In terms of processing, this work demonstrated that this processing route is a novel, simple, and low-cost method for the synthesis of nickel-graphite composites.
        4,200원
        27.
        2019.11 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Molybdenum is a low-resistivity transition metal that can be applied to silicon devices using Si-metal electrode structures and thin film solar cell electrodes. We investigate the deposition of metal Mo thin film by plasma-enhanced atomic layer deposition (PE-ALD). Mo(CO)6 and H2 plasma are used as precursor. H2 plasma is induced between ALD cycles for reduction of Mo(CO)6 and Mo film is deposited on Si substrate at 300℃. Through variation of PE-ALD conditions such as precursor pulse time, plasma pulse time and plasma power, we find that these conditions result in low resistivity. The resistivity is affected by Mo pulse time. We can find the reason through analyzing XPS data according to Mo pulse time. The thickness uniformity is affected by plasma power. The lowest resistivity is 176 μΩ·cm at Mo(CO)6 pulse time 3s. The thickness uniformity of metal Mo thin film deposited by PE-ALD shows a value of less than 3% below the plasma power of 200 W.
        4,000원
        28.
        2019.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In order to investigate the applicability of ohmic heating in the blanching and heat sterilization process of vegetable foods, various electrical properties and heating characteristics were studied using intact potato. The electrical conductivity of potato with cell structure was 0.025 S/m, which was lower than that of starch and protein gel, and was increased linearly with increasing temperature. The temperature of ohmic heating was sharply increased from 8 min at 60 V, reaching 90°C after 10 min. The temperature rise was rapid at 60°C which was due to the increase of current flow by structural change related to the gelatinization of starch. The increase of temperature was faster when the frequency was increased, such as from 500 Hz to 1000 Hz. When potato was heated by ohmic heating at 60- 90 V and 40-120 Hz, rapid and uniform heat generation was possible. Thus, commercial utilization of ohmic heating can be applied for various types of vegetable foodstuff with ohmic heating was observed.
        4,000원
        29.
        2019.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Low cost and scalable manufacturing of highly doped cellulose for enhanced multifunctional applications is still an issue. In this work, eco-friendly nanocomposites were fabricated by incorporating regenerated cellulose (RC) of 10, 30, and 50 wt% into an exfoliated graphene nanoplatelets (GNPs), resulting in the intercalation of GnPs. The thermal and electrical properties of hybrid nanocomposites were investigated. The structural property was conducted through scanning electron microscope and X-ray diffraction analyses. Strong frequency-dependent dielectric response was found due to the change of the permittivity and the loss tangent of nanocomposites by different content of RC, which is associated with the polarizations behavior. Non-elastic relaxation at the GNPs–RC chains interfacial areas in an alternating field was identified as the main cause of polarization losses among others. Detailed ferroelectric measurements provided the evidence of the ideal resistive behavior of the nanocomposites, which are confirmed by the resistivity measurements along the out-of-plane direction of the nanocomposite sheets.
        4,000원
        30.
        2019.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        For the automotive application, graphene-glass composites were fabricated using E-glass fiber(GF) coated with various types of graphene nanosheets deposited by electrophoretic deposition. Graphene oxide(GO) was first synthesized using a modified Hummer’s method and its subsequent ultrasonic treatment in deionized water produced a stable stop of the GO. Glass fiber was immersed in water and GO suspension near the copper anode. The potential applied between the electrodes caused the GO to move toward the anode. In addition, the GO coated yarn was exposed to hydrazine hydrate at 100℃ to obtain a reduced graphene oxide(rGO) coating yarn. Both GO and rGO coated glass fiber yarns were used to fabricate unidirectional epoxy-based multi-scale composites by passive lay-up. The presence of a conductive rGO coating on glass fiber improves both the electrical conductivity and thermal conductivity of the composite. In addition, rGO-based epoxy-glass composites have been used to improve the dielectric constant, providing the option of using this structure for electromagnetic interference shielding.
        4,000원
        32.
        2018.10 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Cu2ZnSn(S,Se)4 (CZTSSe) films were prepared on Mo coated soda lime glass substrates by sulfo-selenization of sputtered stacked Zn-Sn-Cu(CZT) precursor films. The precursor was dried in a capped state with aqueous NaOH solution. The CZT precursor films were sulfo-selenized in the S + Se vapor atmosphere. Sodium was doped during the sulfo-selenization treatment. The effect of sodium doping on the structural and electrical properties of the CZTSSe thin films were studied using FE-SEM(field-emission scanning electron microscopy), XRD(X-ray diffraction), XRF(X-ray fluorescence spectroscopy), dark current, SIMS(secondary ion mass spectrometry), conversion efficiency. The XRD, XRF, FE-SEM, Dark current, SIMS and cell efficiency results indicated that the properties of sulfo-selenized CZTSSe thin films were strongly related to the sodium doping. Further detailed analysis and discussion for effect of sodium doping on the properties CZTSSe thin films will be discussed.
        4,000원
        34.
        2018.04 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        This study investigated the effects of the post annealing temperatures on the electrical and interfacial properties of a metal-semiconductor-metal photodetector(MSM-PD) device. The interdigitate type MSM-PD devices had the structure Al(500 nm) / Ti(200 nm) / poly-Si(500 nm). Structural analyses of the MSM-PD devices were performed by employing X-ray diffraction(XRD), scanning electron microscopy(SEM) and transmission electron microscope(TEM). Electrical characteristics of the MSM-PD were also examined using current-voltage(I-V) measurements. The optimal post annealing condition for the Schottky contact of MSM-PD devices are 350℃-30minutes. However, as the annealing temperature and time are increased, electrical characteristics of MSM-PD device are degraded. Especially, for the annealing conditions of 400℃-180minutes and 500℃-30minutes, the I-V measurement itself was impossible. These results are closely related to the solid phase reactions at the interface of MSM-PD device, which result in the formation of intermetallic compounds such as Al3Ti and Ti7Al5Si12.
        4,000원
        35.
        2017.11 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        In this study, an Al-0.7wt%Fe-0.2wt%Mg-0.2wt%Cu-0.02wt%B alloy was designed to fabricate an aluminum alloy for electrical wire having both high strength and high conductivity. The designed Al alloy was processed by casting, extrusion and drawing processes. Especially, the drawing process was done by severe deformation of a rod with an initial diameter of 12 mm into a wire of 2 mm diameter; process was equivalent to an effective strain of 3.58, and the total reduction in area was 97 %. The drawn Al alloy wire was then annealed at various temperatures of 200 to 400 °C for 30 minutes. The mechanical properties, microstructural changes and electrical properties of the annealed specimens were investigated. As the annealing temperature increased, the tensile strength decreased and the elongation increased. Recovery or/and recrystallization occurred as annealing temperature increased, and complete recrystallization occurred at annealing temperatures over 300 °C. Electric conductivity increased with increasing temperature up to 250 °C, but no significant change was observed above 300 °C. It is concluded that, from the viewpoint of the mechanical and electrical properties, the specimen annealed at 350 oC is the most suitable for the wire drawn Al alloy electrical wire.
        4,000원
        36.
        2017.11 구독 인증기관·개인회원 무료
        분리막을 이용한 수처리 공정은 최근 효과적인 기술로 대두되고 있다. 분리막 표면에서의 기능족들이 이온화가 이루어짐으로써, 표면에 표면전하를 가지게 되는데 분리막 표면과 수계내의 용질의 전기적 상호작용은 분리막 성능에 큰 영향을 준다. 분리막의 표면전하는 대부분 제타전위를 측정함으로써 표면전하 값을 대변해 주는 인자로 사용되어 왔지만 엄밀히 표면에서의 전하라고는 할 수 없다. 제타전위의 경우 표면에서 일정 거리 떨어진 지점인 Shere plane에서의 전기적 포텐셜이기 때문에, 분리막 표면에서의 전기적 이동현상을 이해하기에는 부족한 것이 사실이다. 따라서 본 연구에서는 지난 연구에서 개발한 표면전하를 직접적정하는 기술을 이용하여 분리막의 표면전하를 측정하고 측정된 값을 기반하여 전기적 표면 특성인 pHpzc및 pKa값을 이론적으로 산정하고 분리막공정에 서의 활용성을 제시하는 것을 그 목표로 한다.
        38.
        2017.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The microstructure, flexural properties, electrical conductivity, thermal conductivity and electromagnetic interference (EMI) shielding effectiveness (SE) of epoxy composites filled with multi-walled carbon nanotubes (CNTs), exfoliated graphite nanoplatelets (xGnPs) and CNT-xGnP hybrid filler were investigated. The EMI SE of the CNT-xGnP hybrid composite was higher than 25 dB at 100 MHz while that of the xGnP based composite was almost zero. The flexural modulus of the CNT-xGnP based epoxy composite continuously increased to 3.32 GPa with combined filler content up to 10 wt% while that of the CNT based epoxy composites slightly decreased to 1.96 GPa at 4 wt% CNT, and dropped to 1.57 GPa at 5 wt% loading, which is lower than that of epoxy. The CNT and CNT-xGnP samples had the same EMI SE at the same surface resistivity, because samples with the same surface conductivity have the same amount of the charge carriers.
        4,000원
        39.
        2017.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Fe3O4/Fe/graphene nanocomposite powder is synthesized by electrical wire explosion of Fe wire and dispersed graphene in deionized water at room temperature. The structural and electrochemical characteristics of the powder are characterized by the field-emission scanning electron microscopy, X-ray diffraction, Raman spectroscopy, field-emission transmission electron microscopy, cyclic voltammetry, and galvanometric discharge-charge method. For comparison, Fe3O4/Fe nanocomposites are fabricated under the same conditions. The Fe3O4/Fe nanocomposite particles, around 15-30 nm in size, are highly encapsulated in a graphene matrix. The Fe3O4/Fe/graphene nanocomposite powder exhibits a high initial charge specific capacity of 878 mA/g and a high capacity retention of 91% (798 mA/g) after 50 cycles. The good electrochemical performance of the Fe3O4/Fe/graphene nanocomposite powder is clearly established by comparison of the results with those obtained for Fe3O4/Fe nanocomposite powder and is attributed to alleviation of volume change, good distribution of electrode active materials, and improved electrical conductivity upon the addition of graphene.
        4,000원
        40.
        2017.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The compressive strength and electrical resistance of pitch-based carbon fiber (CF) in cementitious materials are explored to determine the feasibility of its use as a functional material in construction. The most widely used CFs are manufactured from polyacrylonitrile (PAN-based CF). Alternatively, short CFs are obtained in an economical way using pitch as a precursor in a melt-blown process (pitch-based CF), which is cheaper and more eco-friendly method because this pitch-based CF is basically recycled from petroleum residue. In the construction field, PAN-based CFs in the form of fabric are used for rehabilitation purposes to reinforce concrete slabs and piers because of their high mechanical properties. However, studies have revealed that construction materials with pitch-based CF are not popular. This study explores the compressive strength and electrical resistances of a cement paste prism using pitch-based CF.
        4,000원
        1 2 3 4 5