As a member of ectomycorrhizal fungi, Tricholoma matsutake has a symbiotic relationship with its host, Pinus densiflora. To cultivate T. matsutake artificially, the co-cultivation of T. matsutake mycelia and bacteria from shiro was introduced. In this study, bacteria were isolated from soil samples in Bonghwa-gun, and seven bacterial isolates (B22_7_B05, B22_7_B06, B22_7_B07, B22_7_B08, B22_7_B10, B22_7_B13, and B22_7_B14) promoted the growth of T. matsutake mycelia (147.48, 232.11, 266.72, 211.43, 175.17, 154.62, and 177.92%, respectively). Sequencing of the 16S rRNA region of the isolated bacteria was performed. B22_7_B05 and B22_7_B10 were identified as Bacillus toyonensis, B22_7_B06 and B22_7_B08 as Paenibacillus taichungensis, B22_7_B07 and B22_7_B14 as P. gorilla, and B22_7_B13 as P. odorifer. These bacterial isolates were associated with the shiro community and are expected to contribute to the cultivation of T. matsutake.
Tricholoma matsutake is a traditional favorite food in East Asia, cultivated in fairy rings called “shiro,” which are found near Pinus densiflora. For effective artificial cultivation of Tri. matsutake, microorganisms from symbiotic fairy rings are co-cultivated. In this study, one bacterial isolate (Y22_B35) and two fungal isolates (Y22_F64 and Y22_F68) displayed growth-promoting effects on Tri. matsutake mycelium (158.47, 125.00, and 122.26% enhanced growth, respectively). For identification, 16S rRNA or ITS regions from the microorganisms¡¯ genomes were sequenced. Other sequences, including BenA, CaM, and RPB2 were sequenced in the fungal isolates. The bacterial isolate Y22_B35 was identified as Bacillus cereus. Y22_F64 and Y22_F68 were identified as Umbelopsis nana and Aspergillus parvulus, respectively. To identify the effects of the dominant microorganisms on Tri. Matsutake cultivation, metagenomic analyses were performed. Discovery of these Tri. matsutake mycelium growth-promoting microorganisms and metagenomics analyses are expected to contribute to our understanding of Tri. matsutake fruiting body growth and construction of biomimicry.
This study was conducted to determine the optimal dipping time and concentration of gibberellin for improving the growth and quality of domestic cultivar 'Seolhyang' strawberry when using runner plants. Strawberry runner plants were collected on November 10th and soaked in GA3 concentrations of 50, 100, and 150 mg·L-1 for 30 and 60 minutes, respectively. After 75 days of planting, the growth results showed that in the 30-minute, 50 mg·L-1 treatment, the crown diameter was thicker and the T/R ratio was lower, indicating better plant vitality. Runner length increased with lower gibberellin concentrations, particularly promoting vegetative growth. Photosynthetic efficiency was more influenced by gibberellin concentration than dipping time, and using concentrations above a certain threshold acted as a stress factor for runner plants, leading to decreased photosynthetic efficiency. For enhancing seedling growth, soaking with 50 mg·L-1 of gibberellin for 30 minutes was found to be optimal. This study verified the effects of gibberellin treatment on strawberry runner plants to improve plant growth and quality, providing useful basic data for using gibberellin.
To cultivate pine mushroom (Tricholoma matsutake) artificially, co-cultivation with microorganisms has been introduced. Here, experiments were performed to assess the growth-promoting effect of bacteria on T. matsutake mycelia. Bacteria were isolated from soil samples collected in Yangyang County, Korea. Four of the bacterial isolates (Y22_B06, Y22_B11, Y22_B18, and Y22_B22) exhibited a growth-promoting effect on T. matsutake mycelia (154.67%, 125.91%, 134.06%, and 158.28%, respectively). To analyze the characteristics of the bacteria, especially the antifungal activity, -amylase and cellulase activity assays were performed. In comparison with the controls, the isolated bacteria exhibited low -amylase and cellulase activity. 16S rRNA gene sequencing was performed to identify the four bacterial isolates. The isolates belonged to the Terrabacteria group and were identified as Microbacterium paraoxydans, Paenibacillus castaneae, Peribacillus frigoritolerans, and P. butanolivorans. These bacterial isolates are expected to have contributed to the growth promotion of T. matsutake mycelia and the artificial cultivation of T. matsutake.
An auxin-producing bacterium Yangsong-1 was isolated from a button mushroom bed in Chung cheongnam-do. The strain Yangsong-1 was classified as a novel strain of Arthrobacter enclensis based on a chemotaxonomic and phylogenetic analysis. The isolated A. enclensis Yangsong-1 was confirmed to produce indole-3-acetic acid (IAA), which is one of the auxin hormones. When the concentration of IAA was assessed by HPLC quantity analysis, the maximum concentration of IAA, 152.903 mg L-1, was detected from the culture broth incubated in R2A medium containing 0.2% L-tryptophan for 48 h at 35oC. A negative relationship between IAA production and pH was estimated to show that the increase in IAA caused pH acidification of the culture. The effect of the supplement on L-tryptophan, a known precursor of IAA production, appeared to be at maximal production at 0.2% concentration and was rather reduced at concentration above 0.4%. To investigate the growth-promoting effects on the crops, the culture broth of A. enclensis Yangsong-1 was placed in water cultures and seed pots of mung beans and lettuce. In consequence, the adventitious root induction and root growth of mung beans and lettuce were 1.5 and 1.9 times higher, respectively, than those of the control.
충청남도 부여군 석성면 양송이 재배 농가에서 양송이 수확 후 배지로부터 토양을 채취하여 auxin(IAA) 생성능이 뛰어난 세균 Jopap-1 균주를 분리하였다. TLC 및 HPLC 분석을 통해 분리균이 생성한 IAA 농도를 확인한 결과, 0.1% L-tryptophan를 함유한 pH 7.0의 R2A broth 배지에 35℃, 48시간 배양 시 최대 생성농도는 96.05 mg L−1이었다. 생리적 특성 및 계통학적특성 분석을 통해 분리균은 Gram 음성 간균인 Klebsiella michiganensis Jopap-1로 동정되었다. 배양조건별 IAA의 생산능 비교 시, IAA 농도의 증가가 배양액의 pH 산성화에 기인함으로서 IAA 생성량과 pH 변화에는 부의 상관성이 있는 것으로 관측되었다. IAA 생성을 위한 전구물질로 알려진 L-tryptophan의 첨가효과는 0.1% 첨가 시 균의 생육 및 IAA 생성량이 최대이었으며, 0.2% 이상 고농도 첨가 배지에서는 오히려 IAA의 생성이 저해되었다. 또한 분리균에 의한 식물 생육 촉진 효과를 조사하기 위하여 수경재배 및 pot 재배를 통한 녹두발근 생검법과 상추발근 생검법을 수행한 결과, K. michiganensis Jopap-1의 배양액 접종 시 녹두발근 생검법에서는 대조구에 비해 발근수와 뿌리길이에서 약 2.1배의 뿌리 신장 효과를 보였고, 상추발근 생검법에서는 대조구에 비해 뿌리길이와 무게에서 약 1.8배의 뿌리신장효과를 보였다.
In this study, growth enhancing effect of hatchery waste egg decomposed liquid fertilizer in pepper plant cultivation through chlorophyll fluorescence (O-J-I-P) analysis. In a whole growth period, egg decomposed fertilizer treated pepper grew well than non treated plant, though it was not statistically significantly different. Amount of chlorophyll fluorescence of non treated plant was higher thant that of fertilizer treated plant. It is determined that eventually lead to increased photosynthesis. In this study, six parameters, Fo, ABS/RC, RC/ABS, TRo/RC, DI0/RC, and DF Total ABS were the important factors represent efficiency of photochemical responses of pepper plant treated with hatchery waste egg decomposed fertilizer.
An auxin-producing bacteria (A-1) was isolated from soils of Oyster mushroom farmhouse in Daejeon city, South Korea. The strain A-1 was classified as a novel strain of Ochrobactrum anthropi based on a chemotaxanomic and phylogenetic analyses. The isolate was confirmed to produce indole-3-acetic acid (IAA), one of auxin hormones, by TLC and HPLC analyses. The maximum concentration of IAA, 5.6 mg L-1 was detected from the culture broth of O. anthropi A-1 incubated for 24 h at 35oC in R2A broth containing 0.1% L-tryptophan. To investigate the growth-promoting effects to the crops, the culture broth of O. anthropi A-1 was inoculated to water cultures and seed pots of mung bean as well as lettuce. In consequence, the adventitious root induction and root growth of mung bean and lettuce were 2.7 and 1.4 times higher than those of the non-inoculated, respectively.
적심 및 rootone 처리가 고추 10품종의 발근력에 미치는 영향을 조사한 결과, 모두 정상적으로 발근되었으나 품종간에 큰 차이를 보였다. 즉 'Gukbo'와 'Chungyang' 등은 발근력이 낮은 반면, 대목 이용 가능성이 높은 'Geumsang' 등은 매우 높았다. 발근촉진제 rootone 처리는 모든 품종의 발근을 현저히 증가시켜 높은 실용성을 보여주었다. 또한 적심에 따른 발근 지연 현상은 rootone 처리로 거의 완벽하게 보완될 수 있었다. 선발된 대목 10품종과 접수 3품종을 적심과 IBA 단용 또는 병행처리 후 발근력을 검토한 결과, 대목 중에서는 'Tantan'이 가장 높았고, 'Konesian Hot'과 'Wonkwang 1호'도 높았다. 또한 공시된 10개 대목은 대면적에 일반재배 되는 품종인 'Manita', 'Chungyang', 'Nokkwang'보다 발근력이 높았다. IBA 처리는 발근력을 다소 향상시켰으나 rootone 처리에 비해 효과가 뚜렷하지 않았다.
백침계 오이는 측지착과형으로 주지착과형인 국내용 오이와 차이가 있어 백침계 오이의 수량을 증가시키기 위해서는 측지발생을 높여야 가능하다. 그러나 백질계 오이의 재배시기는 대부분 동절기로 저온 및 일조부족 등의 불량한 환경조건 때문에 측지발생이 떨어진다. 본 연구는 생장조정제를 이용하여 백침계 오이의 측지발생을 촉진하기 위하여 BA의 농도 및 살포시기를 구명하고자 하였다 BA 30mg·L-1을 살포한 것은 농도 장해증상이 억제작형에서는 나타났으나, 반촉성작형에서는 경미하게 나타났다. 측지발생은 BA 10mg·L-1 살포하는 것이 BA 30mg·L-1 살포하는 것 보다 많았고, 처리시기는 본엽 10매, 15매 전개되었을 메 살포한 것이 본엽 5매 전개되었을 때 살포한 것보다 많았다.
본 시험은 병원성 사상균에 길항작용이 있고 식물의 생육을 촉진하는 세균을 이용하여 연작 및 비연 작토양에 있어서 옥수수(Zea may L.)의 생산성을 증대시킬 수 있는 방안을 제시하고자 수행되었다. 옥수수는 전남대학교 농과대학 부속동물사육장내 vinyl house에서 자연광 상태에서 p o t ( 30 × 50 c m ) 로 재배한 다음 파종 후 50일 및 90일에 수확하여 건물중을 조사하였으며, 시험토양은 연작 및 비연작지의 양토와 버미큘라이트를 1:1 로 혼합하여 사용하였다. 본 시험에 이용된 세균은 목초근권에서 직접 분리한 Bacillus subtilis 였다. 연작 및 비연작 토양 모두 B. subtilis 처리구에서 옥수수의 건물중이 B. subtilis 무처리구보다 그리고 병원성 사상균 처리구보다 증가되었다. 그리고 비연작 토양에서 생장한 옥수수의 건물중은 연작토양에서 보다 증가하였다. 옥수수의 생장에 있어서 B. subtilis 접종효과는 연작토양보다 비연작토양에서 좋게 나타났다. 그러나 연작 및 비연작토양 모두 병원성사상균을 접종함으로써 옥수수의 건물중은 현저하게 감소되었다.
Kadsura coccinea (Lem.) A.C. Smith is used as a medicinal plant and cosmetic material in China and Southeast Asia. To mass-produce Kadsura coccinea seedlings, the effects of gibberellic acid (GA3) and cold stratification treatments on seed germination were investigated. Seed germination rate with GA3 treatment was most effective at concentrations of 250 or 500 mg/L. With respect to mean germination time (MGT), mean daily germination, and T50 (days to reach 50% seed germination), the germination-promoting effect was improved as the concentration of GA3 increased. Stem growth of seedlings was the highest following GA3 treatments of 250 and 500 mg/L, and the growth promoting effect gradually decreased as the concentration of GA3 decreased. Root growth was stimulated at GA3 concentrations of 250–1,000 mg/L. Examination of the effect of stratification treatment for 15, 30 and 60 days at temperatures of 0, 5 and 10℃ on the germination rate revealed that the most stratification treatment temperature was 10℃, and the results improved with longer treatment periods. Altogether, GA3 and stratification treatments improved the seed germination rate, shortened the MGT, improved germination uniformity, and produced healthy seedlings.
This study was conducted to evaluate the effect of phosphorus acid (H3PO3) addition to the horticultural bed soil on the initial growth of red pepper (Capsicum annuum L. cv.), cucumber (Cucumis sativus L. cv.), and kimchi cabbage (Brassica campestris L. ssp. pekinensis (Lour.) Rupr. cv.). The stem heights of red pepper and cucumber were 46.1% and 23.0% greater in the 50 mg/L of phosphorus acid treatment than the untreated (control). Further, the stem diameter of pepper and cucumber were 48.7% and 23.0% greater in the 50 mg/L of phosphorus acid treatment than the control. In addition, the number of kimchi cabbage leaves was 47.5% greater in the 50 mg/L of phosphorus acid treatment than the control. The dry weights of red pepper, cucumber and kimchi cabbage were 72.9%, 16.5%, and 30.4% heavier in the 50 mg/L than the control, respectively. Cations (K, Ca, and Mg) and total phosphorus (T - P) were quantitatively analyzed for these three horticultural crops. The concentrations of K, Ca, and Mg, and T - P were higher in the 50 mg/L of phosphorus acid than the control, respectively. Based on the results obtained in this study, it appears that treatment of phosphorus acid in horticultural bed soil enhanced the growth of red pepper, cucumber and Kimchi cabbage.
Drought stress is a major agricultural limitation to crop productivity worldwide, especially by which leafy vegetables, plant leaves eaten as vegetable, could be more lethal. The study was carried out to know the effect of drought tolerance plant growth promoting bacteria (PGPB) on water stress of kale seedlings. A total of 146 morphologically distinct bacterial colonies were isolated from bulk soil and rhizosphere soil of leafy vegetables and screened for plant growth promoting microbioassay in greenhouse. Out of them the isolate SB19 significantly promoted the growth of kale seedlings in increasement of about 42% of plant height (14.1 ㎝), 148% of leaf area (19.0 ㎠) and 138% of shoot fresh weight (1662.5 ㎎) attained by the bacterially treated plants compared to distilled water treated control (9.9 ㎝, 7.7 ㎠, 698.8 ㎎). Shoot water content of SB19 treated kale seedlings (1393.8 ㎎) was also increased about 152% compared with control (552.5 ㎎). The SB19 isolated from bulk soil of kale plant in Iksan, Korea, was identified as species of Bacillus based on 16S rRNA gene sequencing analysis. We evaluated the effect of drought tolerance by the Bacillus sp. SB19 on kale seedlings at 7th and 14th days following the onset of the water stress and watering was only at 7th day in the middle of test. In the survey of 7th and 14th day, there were mitigation effect of drought stress in kale seedlings treated with 106 and 107 cell mL-1 of SB19 compared to distilled water treated control. Especially, there were more effective mitigation of drought damage in kale seedlings treated with 107 cell mL-1 than 106 cell mL-1. Further, although drought injury of bacterially treated kale seedlings were not improved at 14th day compared with 7th day, drought injury of 107 cell mL-1 of SB19 treated kale seedlings were not happen rapidly but developed over a longer period of time than 106 cell mL-1 of SB19 or control. The diffidence of results might be caused by the concentration of bacterial suspension. This study suggests that beneficial plant-microbe interaction could be a important role of enhancement of water availability and also provide a good method for improving quality of leafy vegetables under water stress conditions.
Endophytes are microorganisms that live in the internal tissues of plants without harming the host plants. In this symbiotic relationship, the host plants provide nutrients and shelter to the endophytes, in turn, endophytes can promote the growth of host plants and act as a biological control agents against plant pathogens. Plant-microbe interactions like this are noted for natural methods for sustainable agriculture and environmental conservation. However, in spite of the infinite potential, there are only a few reports on the endophytes present in ginseng. In this study, we isolated and identified the endophytes from Panax ginseng seeds and evaluated the biological activities (IAA production ability, nitrogen fixation ability, phosphate solubilization capacity, siderophore production ability, and antifungal activities) of the endophyte isolates. Eight different endophytes were identified by 16S rRNA sequencing. Most of the endophytes have antibiotic and plant growth promoting (PGP) activities. Particularly, PgSEB5-37E have the highest antibiotic activity, both PgSEB5-37B and PgSEB5-37H have high PGP traits such as an abilities to produce IAA, solubilize phosphate and fix nitrogen. These results indicated that the endophytes from P. ginseng seeds may have applicable value to many industries. In order to use the isolated endophytes, quantitative analysis and field tests are needed to be performed.
식물생장조절제가 벼 기계이앙 어린모 육묘시 맷트형성에 미치는 효과를 검토하기 위하여 오합벼를 공시하여 8가지의 생장조절제를 사용, 종자침종하여 맷트형성 효과와 뿌리생장을 조사하여 다음과 같은 결과를 얻었다 1. Metalaxyl ( 25 % 수화제)은 어린모의 뿌리신장과 근모발생에 탁월한 효과가 있었으며 Tetra-cycle, Pachlobutrazol, NTN-821은 처리농도가 높을수록 초장과 근장이 짧아지고 간태가 굵어졌다. 2. Metalaxyl( 200, 1,000ppm) 처리는 무처리에 비하여 근수는 비슷하면서 뿌리신장과 근모발생이 현저히 증가되어 맷트형성이 아주 양호하였던 반면에 Tetracycle 처리에서는 근수는 증가되었지만 근장이 짧아져서 맷트형성이 불량하였다. 3. 공시약제 중 Metalaxyl의 맷트형성 촉진효과가 인정되었으며, 1,000ppm까지는 농도가 높을 수록 맷트형성이 좋아지는 경향이었으며, Metalaxyl의 종자침종을 위 한 적정온도는 약 200ppm으로서 실제로 이용할 때는 1, 000 배액으로 사용하면 되겠다. 4. Metalaxyl의 종자침종 처리로 어린모의 맷트형성은 무처리에 비하여 약 1~2일 단축시킬 수 있었다.