Heavy bitumen scattered in the underground sedimentary layer is a kind of unconventional energy source, and by extracting it, a production well is excavated in the sedimentary layer and high-temperature and high-pressure steam is injected to reduce the viscosity of bitumen and recover it to the ground steam assisted method is applied. As a recovery method that uses the steam effect of the dilution effect of solvent injection, it is a recovery method that can increase thermal efficiency. In this study, the process system of the central processing facility(CPF) of the hybrid steam-solvent recovery method that injects solvent into the existing steam assisted method was analyzed, and the core facilities for each process were identified, and hybrid steam-solvent recovery compared to the existing steam assisted method. In the case of the method, it was evaluated that the amount of steam supply and all utility costs decreased according to the solvent injection.
In this study, chemically enhanced steam cleaning(CESC) was applied as a novel and efficient method for the control of organic and inorganic fouling in ceramic membrane filtration. The constant filtration regression model and the resistance in series model(RISM) were used to investigate the membrane fouling mechanisms. For total filtration, the coefficient of determination(R2) with an approximate value of 1 was obtained in the intermediate blocking model which is considered as the dominant contamination mechanism. In addition, most of the coefficient values showed similar values and this means that the complex fouling was formed during the filtration period. In the RISM, Rc/Rf increased about 4.37 times in chemically enhanced steam cleaning compared to physical backwashing, which implies that the internal fouling resistance was converted to cake layer resistance, so that the membrane fouling hardly to be removed by physical backwashing could be efficiently removed by chemically enhanced steam cleaning. The results of flux recovery rate showed that high-temperature steam may loosen the structure of the membrane cake layer due to the increase in diffusivity and solubility of chemicals and finally enhance the cleaning effect. As a consequence, it is expected that chemically enhanced steam cleaning can drastically improve the efficiency of membrane filtration process when the characteristics of the foulant are identified.
Temperature distribution studies were performed in steam-air retort to investigate the influence of various processing conditions (come-up time, sterilization temperature, and internal pressure throughout the steam-air retort). Retort temperature data were analyzed for temperature deviations during holding phase, maximum temperature difference between test locations at the beginning and after 1, 3, and 5 min of the holding phase, and box-and-whiskers plots for each location during the holding phase. The results showed that high sterilization temperature led to a more uniform temperature distribution than low sterilization temperature (pasteurization). In pasteurization condition, the temperature stability was slightly increased by increasing pressure during the holding phase. On the other hand, the temperature stability was slightly decreased in high sterilization temperature condition. Programming of the comeup phase did not affect the temperature uniformity. In addition, the slowest cold spot was found at the bottom floor during the holding phase in all conditions. This study determined that the temperature distribution is affected by retort processing conditions, but the steam-air retort needs more validation tests for temperature stability.
Recently, automobile washing methods have been carried out using steam of high temperature and high pressure instead of water. Therefore, it is necessary to secure the structural stability of the steam tank. In this study, it is necessary to reduce the weight of the steam tank by reducing the thickness of the existing steam tank by about 25%. The safety of the product design was verified through simulation to ensure the robustness of the product by securing the structural stability and fatigue analysis at high temperature and pressure of the steam tank according to the weight reduction. For newly developed products compared to existing models.
This study aimed to investigate the effect of using corn flakes, produced by pressurized steam chamber, on nutrient disappearance rate and energy value in three Hanwoo and three Holstein cows, implanted with a ruminal fistula. Corn flakes were categorized in 2 groups based on the chamber type: control (corn flakes produced using a steam chamber) and treatment (corn flakes produced using a pressurized steam chamber). Dry matter (DM) disappearance rate was 5.17% higher in treatment than in control (p<0.01). Starch disappearance rate was also higher in the treatment than in the control (p<0.01). Nitrogen free extract (NFE) and non-fiber carbohydrate (NFC) disappearance rates were 6.08 and 5.71% higher in treatment compared to control, respectively (p<0.01). In comparison by breed and incubation time, DM, starch, NFE, and NFC disappearance rates were higher in treatment than in control. The mean total digestible nutrients (TDN) was higher in treatment than in control (p<0.05). In comparison between Hanwoo and Holstein, TDN of corn flakes was slightly but not significantly higher in Holstein than in Hanwoo. Thus, these results indicate that the use of the pressurized steam chamber is recommended to increase the nutrient (starch, NFE, NFC etc.) disappearance rate and TDN.
대형선박의 발전에 사용되는 증기터빈에는 핵심부품으로서 노즐플레이트가 활용되는데 정밀 산업 이 발전한 요즘에도 오래 전의 설계와 생산방식을 답습하고 있다. 노즐플레이트는 많은 터빈 블레이드와 이너링, 아우터링으로 구성되어 있고 이들을 서로 용접하여 제작한다. 용접 시에 블레이드의 뒤틀림 등으로 인하여 그 용접위치에 약간의 변위가 발생하여 각 블레이드 간의 pitch가 불균일하여지고 이로 인해 플레이트의 성능 저하가 우려된다. 이러한 점을 개선하기 위해 용접식 보다는 pitch의 등간격을 유지시키는데 유리한 조립식 설계로 전환하는 것이 필요하다. 이는 설계 변경을 해야 하며 또한 새로운 설계 시에 그에 대한 응력을 기초로 하는 구조해석과 장시간 사용되었을 경우에 대비하여 내구성 시험이 수반되어야 한다. 본 연구는 터빈 블레이드의 구조 설계를 조립식으로 변경하고 이의 결합성을 검토한 후 사이버 공간상에서 안전성 검증을 통하여 실용 가능성을 입증하고자 한다.
Born in the 19th century as an intermediate between the past and the future, steampunk provides a strong feeling of fantasy. The objective of this research is to understand the utilization of steampunk in all realms through an in-depth literature review and empirical study. Taking the findings as a foundation, we will analyze examples shown in fashion designs that are put into real production, and those designs that can provide inspiration for further design development. The research methodology will constitute a major analysis of advanced research, internet materials, and literature. Photo materials will be collected from professional websites for steampunk. The product method such as follows. Firstly, we will classify the internal meaning of characteristics in steampunk that are similar to the characteristics that are being researched, then take it as the standard and arrange to integrate all five features: restoration, pluralism, duplicity, resistibility and abnormality. We will spread out the design based on images from advanced research. Secondly, in order for to design a steampunk product, I decided on four themes: devastated environment, brutal wars, cool-headed machinery, and the overlap of the future and the past. Inspiration was acquired from representative movies and animations featuring steampunk. Thus, new directions for fashion design with steampunk features can be discovered. It raises the feasibility of this combination in modern society. In the future with the development of technology, it functions as a design that is easy for users to approach.
The effect of drying temperature and steaming time on the browning and antioxidant activity of dried Platycodon grandiflorum was investigated. Thirteen treatment conditions were constructed using central composite face-centered design containing 5 center points. Drying temperature and steaming time (as factors) were 45-75oC and 15-45 min. According to treatment conditions, dried Platycodon grandiflorum was assessed for color characteristic, degree of browning, total polyphenol content, and DPPH and ABTS free radical scavenging (as responses). When increasing drying temperature within a given steaming time, dried Platycodon grandiflorum exhibited decreased lightness, increased redness, degree of browning, and total polyphenol contents, and enhanced antioxidant activities. Except for total polyphenol contents and antioxidant activities, steaming time within a given drying temperature exhibited similar effects to those observed in drying temperature. However, steaming time did not likely influence total polyphenol contents and revealed the opposite trends observed for the effect of drying temperature on their antioxidant activities. The overall results suggested that drying temperature was the main factor for changes in the browning and antioxidant activity of dried Platycodon grandiflorum.
본 연구에서는 CVD법으로 세라믹 막을 제조하였다. 튜브의 α-Al2O3 지지체 위에 Ga 염이 첨가된 γ-Al2O3를 코팅하였고, 실란화합물인 tetramethylorthosilane (TMOS) 를 650℃에서 화학적 기상 증착법으로 막에 증착하였다. 제조된 세라믹 막을 사용하여 수소, 질소, 이산화탄소, 메탄의 단일조성 기체투과 실험을 600℃에서 시행하였다. Ga 염 비첨가 시, 600℃ 수분 처리 실험의 H2/N2 선택도가 926에서 829로 감소한 반면, Ga 염 첨가 시에는 910에서 904로 안정하였다. 이 결과를 통해, 막에 금속염을 첨가하여 제조한 막이 수분 안정성을 향상시킴을 확인하였다.
This paper examines the effects of various methods of soft steaming(i.e., forced convection-boiler, forced convection-fan, and natural convection) on the quality of potatoes. In particular, the paper investigates the effects of cooking conditions (the steaming method, the treatment time, and the temperature) on the color(L, a, b), moisture content, texture profile, and ascorbic acid of potatoes. The results indicate that not only the cooking method, the treatment time, and the temperature but also the heat transfer mechanism had considerable influence on potato quality. In addition, natural convection steaming was superior to other treatment methods in terms of nutrient retention and texture maintenance. The results of this study should be useful for establishing commercial standards for processing potatoes and improving the quality of thermally processed foods.
Thermally processed vegetables have long been considered to have lower nutritional values compared to fresh produce. This consideration is based on the fact that ascorbic acid(vitamin C) or other thermolabile compounds may lose their activity due to oxidation or by consequence of leaching into the water during home cooking or industrial processing, such as by blanching. In this study, major agricultural products such as carrots, broccoli, and potatoes were exposed to steam treatments of different types. Then, changes in color and levels of ascorbic acid, carotene, and moisture in the fresh and steam processed vegetable samples were measured and evaluated. The results clearly showed that steam-processing using a natural convection type method was superior to the other treatments in terms of quality, including color and nutrient retention, among all the vegetables tested.
Characteristics of plasma nitriding and nitrocarburizing for steam treated sintered steels were studied. Fe-0.8%C powder containing Ni, Cu were sintered at 112 and steamed at 52. Temperature of plasma nitriding and nitrocarburizing was varied from 50 to . Gas mixture of nitriding was set at : =80:20 (vol.%), but was added 1~2 vol.% for nitrocarburizing. Steam treatment for sintered steels brought not only the formation of oxide layer but also decarburizing near the surface. Decrease in hardness near the surface resulted from the formation of ferrite due to decarburizing. Thus, the low hardness was recovered not with plasma nitriding but with plasma nitrocarburixing. Wear resistance properties of steamed specimens and ni-trocarburized specimens were better than those of nitrided specimens according to the pin-on-disk wear test. On the other hand, the fatigue life of steamed specimen was shorter than that of nitrocaiburized specimen.
최근 중질유 사용 비중이 높아짐에 따라 정유 플랜트의 정제공정에서 질소성분에서 유래된 다량의 암모니아가 황 회수시설로 유입되어 관 부식등의 문제를 일으켜 암모니아의 효율적 제거에 관심이 증가하고 있다. 암모니아 제거공정 중 Steam stripping은 스팀을 사용하여 충진탑에서 다성분의 액체가 공급되어 충진물을 타고 내려가며 스팀은 탑 아래에서 올라가며 암모니아가 스팀과 함께 증발해나오는 공정이다. 스팀을 사용하여 제거효율을 높일 수 있고 부산물로 암모니아수를 확보하여 소각로, 발전소 탈질설비의 환원제로 사용하여 시설 운영비를 절감할 수 있는 장점으로 연구개발에 착수하였다. 플랜트에서 암모니아는 보통 저농도로 존재하기 때문에 저농도에서 암모니아를 제거하여 회수하는데 초점을 맞췄다. 고농도에서 암모니아를 회수하는 데는 어려움이 없지만, 저농도에서 암모니아를 회수하기에는 수많은 조건이 따른다. Feed농도와 탑내로 주입하는 스팀양과의 비율, 주입스팀양에 따른 컨덴서에서의 응축량과 recycle되는 성분의 비율, 스팀양과 제거율, 회수암모니아수의 관계등의 조건을 최적화시킬 필요가 있다. 본 연구에서는 저농도 조건에서 높은 제거효율과 고농도의 암모니아수를 회수하는 최적화된 연구에 관하여 보고하고자한다.
국내 전력난 해소 및 다양한 에너지공급 및 저장기술 포트폴리오를 구성하기 위해서는 차세대 에너지저장기술 개발이 필요하며, 기존의 화석연료를 사용하지 않고 전기-에너지원을 다양화 할 수 있는 기술 개발이 필요하다. 또한 다양한 신재생에너지원을 융합한 열 및 전기 생산 기술과 이를 이용하여 수소 생산 후 필요시 전기로 재공급할 수 있는 미래형 에너지저장 기술의 기저 에너지원으로 폐기물 자원을 활용할 신기술이 필요하다. 기존의 생활폐기물과 일부 가연성 산업폐기물을 소각하여 얻은 스팀은 대부분 180~250℃, 7~20bar로 발전효율이 10% 내외로 경제적으로 활용하는데 어려움이 있어 최근에서는 SRF 연소보일러를 개발하여 400℃, 40 bar 스팀을 생산하여 발전효율을 향상하는 연구가 수행되고 있다. 이와 같이 낮은 온도의 스팀은 소각로에서 생산한 후 2차적인 승온장치를 이용하여 초고온인 700℃ 이상의 스팀을 생산하여 양방향 수전해장치에서 수소-전기전환이 가능한 스팀으로 사용하고자 한다. 따라서 본 연구에서는 소각로에서 생산한 낮은 온도, 압력의 스팀을 초고온으로 승온할 수 있는 연소장치를 설계 및 제작하여 실험하고자 한다.