검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 55

        1.
        2023.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The heat transfer characteristics of double-pipe spiral heat exchanger were investigated by various curvature sizes, experimentally. The three different sizes of heat exchanger were made and tested with water as a working fluid to analyze the heat transfer characteristics. The heat transfer rates, overall heat transfer coefficient and pressure drop were analyzed with various heat exchanger sizes (i.e., curvature ratios). As result, the heat transfer rate increased with increasing the size of the heat exchanger as the flow rate increased due to increasing the area size of heat transfer. However, the overall heat transfer coefficient and pressure drop increased with decreasing the heat exchanger size (i.e., increased curvature ratio) due to the enhanced centrifugal force and inertia.
        4,000원
        4.
        2022.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Asphalt concrete(Ascon) is used to repair potholes and cracks. Special truck-mounted cargo boxes transport 200℃ asphalt concrete to repair potholes and cracks. However, long working and transportation hours to repair wide roads decrease the temperature of the asphalt concrete inside the cargo boxes. If the asphalt concrete temperature drops below 170℃, the adhesion with roads that need repair decreases. Therefore, the temperature of the asphalt concrete needs to be maintained for a long time. Conventional asphalt concrete cargo boxes are mostly burner-type models using hot air to prevent the temperature of the asphalt concrete from dropping. However, there are significant temperature differences between the asphalt concrete near and far away from the hot air, so the temperature decreases over time and leads to the disposal of large amounts of asphalt concrete. This causes waste of resources and environmental pollution. Therefore, this study proposed a heat dissipation cut-off type cargo box model to solve this problem and demonstrated its performance over conventional burner-type models through tests and analysis.
        4,000원
        5.
        2021.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Solar energy is being constantly studied since it can reduce green house gas by adapting cooling and heating system of domestic architecture as a clean energy source. This study confirmed the reliability of experimental apparatus with temperature measurement of each components by developing cooling and heating system which is combined with artificial solar thermal energy using halogen lamp and refrigerator, examined the heat transfer characteristics according to room internal temperature and lamp distance with the materials of emissive plate (acrylic, copper and stainless). As a result of it, We found that the room internal temperature 18℃ was finer than 21℃ and 24℃ in case of heat transfer rate according to each components. Also, copper in the material change of emissive plate was showed finer heat transfer effects than stainless because of high thermal absorptivity when lamp distance was short.
        4,000원
        7.
        2020.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The effect of flow direction on heat transfer in water cooling channel of lithium-ion battery is numerically investigated. Battery Design StudioⓇ software is used for modeling electro-chemical heat generation in the battery and the conjugated heat transfer is analyzed with the commercial package STAR-CCM+. The result shows that the maximum temperature and temperature difference of battery with Type 1 are the lowest because the heat transfer in the entrance region near the electrode is enhanced. As the inlet velocity is increased, the maximum temperature and temperature difference of battery decreases but the pressure loss increases. The pressure loss in Type 2 channel is the lowest due to the shortest channel length, while the pressure loss with Type 3 or 4 channel is the highest because of the longest channel length. Considering heat transfer performance and pressure loss, Type 1 is the best cooling channel.
        4,000원
        9.
        2020.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this paper, the heat transfer performance of nanofluids is predicted by numerical analysis methods. The nanoparticles used in this study is SiO2, with concentrations of 1, 2, 3vol.%, and the base fluid is water. Reynolds number of nanofluids ranges from 10,000 to 50,000. A numerical study on the heat transfer characteristics of nanofluid was conducted using a single-phase model. The temperature of the fluid entering from the inlet of the tube is 293.15K. A constant heat flux of 31,650W/m2 was applied at the wall, and the thickness of the wall was ignored. Heat transfer coefficients, thermal conductivity and Nusselt number were selected as indicators for comparing heat transfer performance of nanofluids. As the nanofluid concentration increases, the temperature and velocity distribution by the cross section of the coil tube and straight tube increased. As the Reynolds number increases, temperature difference between inner direction and outer direction reduced in coil tube. For straight tube, the temperature difference between the wall and the center of the tube also decreased.
        4,000원
        11.
        2020.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The purpose of this study is to analyze the temperature and heat resistance distribution, which is a criterion for evaluating the cooling performance, by using computer simulation of the cooling system combined with the CPU of the individual highest heat generation section, and use it as important data for the heat sink design. Using a single material of Al 6063-T5, which is an integral part of the desktop, fan and heat sink, fins and base, the analysis was carried out with various fin numbers, thicknesses, pitches and shapes of heat sinks. Ambient temperature, 25°C, heat source, 130W and cooling fan speed, 2500 rpm (50CFM) were used as boundary conditions, and heat transfer characteristics regarding temperature distribution and heat resistance were investigated using ANSYS Icepak. As a result, it has been found that as the number of fins of heat sink increases, the heat dissipation area increases to decrease heat resistance, and as the distance between each fin decreases, the ventilation resistance increases to decrease the flow intensity of the cooling air in contact with the heat dissipation area. The sunburst array also exhibits better heat transfer characteristics by obtaining a lower distribution of heat resistance with a cooling effect of about 10°C than the one-way basic array.
        4,000원
        13.
        2019.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Heat transfer and pressure drop of horizontal heat exchangers with different configurations and installations numerically characterized. Three different heat exchangers were used and shaped as linear, wavy, and horizontal slinky, respectively. Installation depth was set from 0.5m to 3.0m and pipe spacing was ranged from 0.3m to 2.1m. The results showed that heat transfer rate and pressure drop were increased with the increase in the installation depth and the pipe spacing. The horizontal slinky heat exchanger carried more heat compared to others due to the greater effective heat transfer surface area per installation area. In terms of a ratio of heat transfer rate to pressure drop indicating the system efficiency, the linear heat exchanger performed better than others. On the other hand, the horizontal slinky heat exchanger was the most effective with respect to a ratio of heat transfer rate to installation cost.
        4,000원
        14.
        2018.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, effects of reducing white smoke at a heat exchange system for white smoke reduction were studied in the winter season. For this purpose, the heat transfer processes on the exhaust air were investigated by Solidworks. Five wave heat exchangers of air-to-air and air-to-water type were applied for the exhaust air heat recovery. The analytical condition of the exhaust air was fixed and the computational analysis was performed according to the change of SA(supply air) inlet velocities. In order to evaluate the performance of the heat exchange system for white smoke reduction, W(water)/SA recovered capacities and the temperature/ absolute humidity reduction rate were calculated. As SA inlet velocity increased, the exit temperature and absolute humidity of the mixing zone were reduced by up to about 40℃ and 0.12kg/kg respectively. Also, W/SA recovered capacities increased linearly up to about 35%.
        4,000원
        17.
        2018.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this paper, we study the effect of cooling dehumidification process and wave heat exchanger on the reduction of white smoke and the efficiency by combination of heat exchanger with numerical analysis method. For this purpose, four types of heat exchange systems combined with 5-stage wave heat exchangers were selected to analyze the heat transfer characteristics of the heat exchange system in the winter condition. As the high temperature exhaust air flowed from HX 1 to HX 5, the final outlet temperatures of the four heat exchange systems(Cases 1, 2, 3 and 4) gradually decreased. The heat transfer rate and dehumidification amount were the best in Case 1 and Case 3, respectively. It can be seen that the heat flow in the heat exchanger is different according to the combination of the four kinds of wave heat exchanger and the fluid flow.
        4,000원
        18.
        2018.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        A numerical approach for ventilated disc brake with holes is carried out to investigate the effect of holes on the heat transfer characteristics. The numerical simulation code STAR-CCM+ is utilized to calculate flow and temperature fields with polyhedral meshes. The steady state results show that the holes make the flow velocity on the outer surface increasing, which induce the improvement of convective heat transfer on the outer surface. In the ventilated channel with holes, the convective heat transfer can be reduced due to the inflow of hot air through holes. In unsteady state, the disc has reached the highest temperature in 1,8s since the brake was engaged. The surface of disc without holes has maximum temperatures along the ventilated channels, while the surface temperatures of dis with holes are uniform.
        4,000원
        19.
        2017.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, the appearance change and the heat․moisture transfer properties of knitted fabric by yarn shrinkage were examined to obtain useful data on the development of thermo-sensitive functional materials. Eleven types of knitted fabric were knitted using highly bulky acrylic-blended yarn. After shrinking the specimens using dry heat treatment, the appearance change and thickness were measured. An HEC simulator was adopted for measuring the heat․moisture transfer properties of specimens by yarn shrinkage. When holes were arranged vertically in the mesh structure, the specimens with 2,500 and 5,000 holes showed high percent change of hole area, appearance, and thickness. When holes were diagonally arranged in the mesh structure, the percent change of hole area in the specimen with 1,250 holes was larger than the one with 2,500 holes. However, the dimensional stability of the specimen with 2,500 holes was better because of its smaller appearance and thickness change. In the tuck structure, the percent change of hole area in the specimen with 625 and 416 holes was relatively large compared with the appearance and thickness change. Furthermore, the hole size in the tuck structure was smaller than that in the mesh structure but the percent change of hole area was larger. Therefore, it was proved that the tuck structure is more suitable than the mesh structure for developing thermo-sensitive functional materials. Heat․moisture transfer property test verified that the change of hole area by yarn shrinkage enabled obtaining the thermal effect due to the distinct temperature difference in the inner layer.
        4,500원
        20.
        2017.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        An experimental investigation is performed to study the effect of jet to plate spacing and low Reynolds number on the local heat transfer distribution to normally impinging submerged circular air jet on a smooth and flat surface. A single jet from a straight circular nozzle of length to diameter ratio(l/d) of 83 is tested. Reynolds number based on nozzle exit condition is varied between 500 and 8,000 and jet to plate spacing between 0.5 and 8 nozzle diameter. The local het transfer characteristics are obtained using thermal images from infrared thermal imaging technique. It was observed that at lower Reynolds numbers, the effect of jet to plate distances covered during the study on the stagnation point Nusselt numbers is minimal. At all jet to plate distances, the stagnation point Nusselt numbers decrease monotonically with the maximum occurring at a z/d of 0.5 as opposed to the stagnation point Nusselt numbers at high Reynolds numbers which occur around a z/d of 6.
        4,000원
        1 2 3