In the present study, a calorimeter was used to experimentally investigate the cooling capacity and COP changes according to the pipe length of a variable capacity A/C system with long pipes. Cooling capacity, COP, and compressor discharge temperature were obtained by changing pipe length and loading duty. And the operation status and cycle change process of the A/C system were investigated using some experimental data and P-h diagrams. In long pipes, the pressure drop increases and the operating load on the compressor increases. Additionally, at the same loading duty, cooling capacity and COP decrease and the compressor discharge temperature increases. As loading duty increases, cooling capacity and compressor power consumption increase. Since the temperature deviation between the experimental value and the correlation equation for the discharge temperature of the long-pipe compressor shows a maximum of 10.5℃(50m, L/D : 20/0), the existing correlation equation needs to be modified.
본 연구는 축산시설 내 설치된 무창기공형 집열기의 배기 방향 및 유량 변화를 통해 벽체에 전달되는 일사를 차단, 이를 통한 냉방효과를 검증하려는 목적의 기초 연구로서 무창기공형 집열기 시험장치를 제작, 배기 유량 변화에 따른 위치별 온도 변화 및 이를 통한 열성능 평가를 수행하였다. 실험 결과, 무창기공형 집열기의 유량조건별 집열판 표면온도는 최고 27.7℃, 배기온도는 최고 약 10.9℃ 온도 차이를 확인하였다. 무창기공형 집열기의 유량조건별 열교환 유효도는 0.48∼0.62, 효율은 30%∼90%의 분포로 나타났다. 집열판 에너지는 유량이 증가함에 따라 감소, 집열기 내부 에너지는 유량이 증가함에 따라 증가하였다. 이를 통해 농업시설 외벽에 설치된 무창기공형 집열기의 여름철 미운용으로 인한 집열판 및 내부 온도상승과 이로 인한 벽체로의 열전달 등 무창기공형 집열기로 인한 역효과를 방지할 수 있을 뿐만 아니라 집열기 외부로의 강제 배기를 통해 벽체로 직접 투입되는 일사 차단을 통한 냉방효과 또한 구현할 수 있을 것으로 판단된다.
In this study, the cooling performance of a variable capacity A/C system was experimentally studied. A psychrometric calorimeter was used to obtain performance data of the A/C system using the pulse width modulation method and compare it with the compressor discharge temperature correlation equation. Cooling capacity, COP, and compressor discharge temperature were obtained by changing indoor and outdoor temperatures, refrigerant amount, and loading duty. The following results were obtained by selecting 5 types of refrigerant amount, 3 types of outdoor temperature (fixed indoor temperature), and 2 types of loading duty. As the outdoor temperature increased, cooling capacity and COP according to outdoor conditions decreased. And the higher the loading duty, the greater the cooling capacity, but the COP was minimal. The change in cooling capacity and COP due to the increase in refrigerant amount was not significant. Additionally, the change in compressor discharge temperature is more influenced by the outside temperature than by the loading duty.
Recently, the International Maritime Organization is strengthening regulations for ships operating in polar regions. Hence, insulated multi-core tubes as components for vessels operating in extreme cold need to be investigated in various aspects. Furthermore, the demand for research on electric propulsion vessels is also increasingly growing. Thus, to utilize a 4-core insulated multi-core tube with glass wool as insulation, which was previously developed for ships operating in polar regions, as a water-cooled electrical cable, this study conducted an experiment on the temperature change when water at normal temperature 25℃ was supplied as a coolant under the overcurrent varied from 10A to 25A. As a result, the temperature increase of the core in 10A condition was 3.3℃, but it increased to 13.05℃ in the 25A condition. This showed that a temperature difference of approximately 9.75℃ occurred according to the overcurrent load. However, the coolant inlet and outlet temperatures were relatively uniform around 1℃ in all conditions. This suggests that increasing the residence time by proper control of the coolant flow in the future could achieve a higher cooling effect.
In order to develop greenhouse cooling and water saving technologies suitable for desert climate, the performance evaluation of the cooling packages and condensate water recovery from cooling fan coil unit. As a result of the application for tomato greenhouse in summer, the root zone temperature of root zone cooling+duct cooling case and root zone cooling case was 25℃ during the day and 20℃ at night, which was suitable for tomato growth. When the nutrient solution tank was cooled, the temperature of the nutrient solution was maintained at 20 degrees, but otherwise, the temperature exceeded 30℃, causing the root zone temperature to rise. Condensate water recovery per fan coil unit was 93L on average per day in August, and was proportional to relative humidity in greenhouse and temperature difference between dew point temperature and the surface temperature of heat exchanger. Tomato growth was found to be improved in the order of root zone cooling+duct cooling, root zone cooling, duct cooling and control. It was analyzed that the yield of root zone cooling+duct cooling, root zone cooling and duct cooling increased by 35%, 28% and 11%, respectively, compared to the control.
Test of the operating characteristics and energy saving performance of a container cooling system that reduces the operating energy of a refrigeration system using a loop thermosyphon heat exchanger that removes heat by temperature difference between outdoor and indoor was performed. As a result of the experiments, when the loop thermosyphon and the refrigeration system were operated simultaneously, the refrigeration system operated intermittently by reducing the heat load. As the temperature difference between indoor and outdoor increased, the operating time of the refrigeration system decreased and the energy efficiency rate increased. Energy efficiency rate showed a tendency to increase with increasing temperature difference, and the predicted correlation of energy efficiency rate using the performance of the loop thermosyphon heat exchanger and the refrigeration system was relatively consistent with the experimental value.
For this study, we established a system for the CPU cooling performance evaluation and conducted performance tests on air-cooling and water-cooling to understand the effect of the CPU cooling method on performance. For the performance evaluation, the test chamber and water-cooling system were set up, the workload S/W was selected, and a case file was created. In the case of the air-cooling, the CPU temperature is sensitively affected by the outside air temperature, the direction of the board installation, and the influence of the airflow formed around it, and may cause a lot of fluctuations in the CPU temperature. When the water-cooling system was applied, the CPU temperature decreased from 75℃℃ to 37℃ compared to the air-cooled type under the test conditions of 28.5℃ and 3LPM cooling water supply temperature and flow rate. As the CPU clock speed increased due to the decrease in temperature, it was found that the job execution time was reduced by 15~23%. In the future, it is expected that using this performance evaluation environment established through this study will enable us to easily conduct test evaluations for various processors, cooling methods, and changes in operating conditions.
In this paper, a heat exchange system using cooling dehumidification and mixing process was proposed as an experimental study for a white smoke reduction heat exchanger system under winter condition. The white smoke reduction heat exchange system is divided into an EA part, SA part, W part and mixing zone. For the operating conditions, three types (Cases 1, 2, and 3) were selected depending on whether EA fan, SA fan, and A-W heat exchanger were operated. In addition, in order to visualize the white smoke exhausted from the mixing zone, it was photographed using CCTV. In order to investigate the performance of the white smoke reduction heat exchange system, the temperature reduction rate and absolute humidity reduction rate of EA and the heat recovery rate of W were calculated. The temperature change of EA and SA according to operating conditions was most effective in Case 3, and the temperature and absolute humidity at the outlet of the mixing zone were greatly reduced. From the results of the white smoke visualization, it was confirmed that the white smoke generation mechanism was different depending on the operating conditions, and the amount of white smoke generation was greatly reduced.
In this study, the cooling performance of the motor was analyzed according to the number and the length of the fins of the heat sink, and at the same time, the effect of forced convection on the cooling performance improvement by changing the air flow speed of the cooling fan was conducted. In order to find out the cooling performance in terms of turbulent kinetic energy, pressure, and temperature according to the number of heat sink fins, length of fins, and wind speed of the cooling fan, an aluminum heat sink was modeled according to the size of the motor. The heating value of the motor was calculated, and it was set to be the same under all analysis conditions. The turbulence model applied for numerical analysis in this study used the standard k-ε model. As a result, it was confirmed that the cooling effect of the heat sink increases as the air flow speed of the cooling fan, the number of fins, and the length of fins increase.
Experiments were conducted to evaluate the performance factors such as type of working fluid, flow direction, arrangement and stage of loop thermosyphon heat exchanger for ESS battery container cooling. Pentane showed slightly better performance of the heat exchanger than R-134a as a working fluid. Driving the fan in the suction direction showed improved performance compared to the blowing direction. The two-stage heat exchanger increased the heat transfer rate by more than 30% at the same temperature difference compared to the single-stage heat exchanger. Also, the counterflow flow showed better performance than the parallel flow in the two-stage heat exchanger.
판형 열교환기는 1920년대부터 본격적으로 상업화되었으며, 이후 판형 열교환기의 기본 컨셉은 지금까지도 거의 변화가 없었지만 고온, 고압 그리고 대용량 열교환에 적용되기 위해 설계 및 제작 방법들이 혁신적으로 발전하여 지금에 이르게 되었다. 판형 열교환기의 개발 트렌드는 전열 효율이 좋으면서 압 력강하가 낮고 또한 유체 분배가 잘되는 전열판의 개발과 일치한다. 본 연구에서는 이러한 트렌드를 만족 시키는 선박용 중속엔진 오일 냉각용 판형 쿨러 개발과 관련된 주요 과정들을 소개하고, 또한 개발된 판형 오일쿨러의 전열성능을 실험적으로 분석하여 이에 대한 결과를 제공하고자 한다. 본 연구에서 판형 쿨러는 구조적 특징으로 인해 직접 판벽 온도를 측정할 수 없어 수정된 Wilson Plot 방법을 응용하여 열전달계수를 구하였다. 오일-물 실험 전에 물-물 실험을 통해 우선 물측의 열전달계수와 압력강하량을 구하였고, 그 결과를 바탕으로 오일측의 열전달계수를 구하였다. 양측 모두 유량 증가에 따라 열전달 성능은 증가하였지 만, 압력강하량도 동시에 증가하였다. 그리고 실험을 통해 본 연구에서 개발된 판형 오일쿨러가 개발목표치를 성공적으로 달성하였음을 확인할 수 있었다.
Experiments were conducted on the operating characteristics and performance of various types of working fluid, filling amount and heat flow rate of a loop thermosyphon for cooling ESS battery container. As results of performance test on various working fluids, HFE-7100 and R-134a as a working fluids showed unstable operating and low performance due to vapor pressure drop, and performance was improved by increasing the number of vapor lines for reducing a pressure drop. In this study, n-pentane was more stable and showed better thermal performance among various working fluids.
In this study, heat exchangers used in data center and building air-conditioners were tested according to the type of heat exchangers to select them for commercial use. The experiment was performed three samples, one micro channel heat exchanger, the same volume oval coil and the same performance oval coil. The experiment conducted under actual operation conditions in the data center and building. Micro-channel heat exchanger has lower air side pressure drop and higher capacity per volume than oval coil. It may be advantageous when the installation small space or the little design static pressure in the fan, such as in-row systems or CRAC installed in data center.
In this study, the change of cooling water temperature (72, 85, 95 ℃) and engine speed (1,800, 2,000, 2,200, 2,400rpm) were experimentally investigated to confirm the operation performance characteristics of auxiliary engine for refrigeration unit. The experimental setup consisted of fuel consumption meter, power meter, and heat transfer unit. The operation performances such as BSFC, exhaust temperature, power generation, and engine efficiency of the auxiliary engine showed similar characteristics in the present experimental range, according to the change of cooling water temperatures and rpms. As the torque increased, the BSFC decreased significantly and the exhaust temperature increased. The power generation increased linearly and the efficiency was insignificant at more than 40 Nm torque.
In this study, the cooling and heating amount, temperature, flow rate of turbine type heat meter for water source heat-pump system were experimentally investigated at the standard operating conditions. The obtained cooling and heating capacity from the heat meter were deviated within 5.0%, 3.8% comparing with the precise values calculated from an accredited test facility. Even though the accumulated cooling and heating amount values of the heat meter had a small difference comparing with the precise values, the temperatures of heat meter showed greatly different values comparing with the precise temperature. Therefore, it is highly recommended to develop the heat meter which is appropriate for the water source heat pump systems.