This study investigated the impact of hydrolyzed plant proteins on the physical, thermal, and rheological properties of rice flour (RF) for protein fortification for the elderly and general food systems. Faba bean protein concentrate and chickpea flour were first treated with polysaccharide hydrolyzed enzymes (control; CTFP and CTCF, respectively) and subsequentially with protease hydrolyzed enzymes (hydrolyzed protein material; HZFP and HZCF, respectively). The addition of CTFP and HZFP enhanced the swelling power of RF, whereas the CTCF and HZCF exhibited the opposite trends. Adding all controls and hydrolyzed protein materials to RF increased the solubility and gelatinization temperature and decreased the gelatinization enthalpy. The HZFP addition successfully developed the pasting viscosity of RF, whereas the others did not. The RF-HZFP mixture had a higher peak viscosity than RF but lower trough, breakdown, final, and setback viscosities. These findings suggest that the controls and hydrolyzed protein materials studied here could be used as sources for protein fortification of foods, particularly for the elderly, with minimal changes in textural and rheological characteristics, thereby contributing to the development of nutritious and palatable food products.
This study evaluated the physicochemical characteristics of wheat-flour mixed powders and cooking properties of Sujebi based on the addition of ‘Baromi2’ rice flours for increased expansion of rice consumption. The addition rates at which a roll surface sheet was formed were selected as 0, 10, 20, 30, and 50% based on preliminary experiments with 0-90% addition rates of ‘Baromi2’. Results of physicochemical characterization showed that increasing the addition ratio of ‘Baromi2’ rice flour resulted in increased crude ash and crude fat levels, however crude protein and total starch decreased. The L*-value (lightness) increased with increasing addition ratio of ‘Baromi2’ rice flour; in contrast, a*-value (redness), b*-value (yellowness), and particle size decreased. Results of RVA showed that increasing the addition ratio of ‘Baromi2’ rice flour increased the peak, breakdown, and setback. Regarding textural properties, hardness and chewiness values were significantly reduced with increasing addition ratios of ‘Baromi2’ rice flour. Based on these results, a blending ratio of 20% or less of ‘Baromi2’ is considered suitable for producing Sujebi, and this result serves as basic data for the development of processed rice flour products using ‘Baromi2’.
This study investigated the physicochemical properties of protein-fortified rice flour by mixing rice flour (RF) with untreated and fermented plant proteins. Fermented faba bean protein concentrate (FMFP) and chickpea flour (FMCF) were prepared by solid-state fermentation of faba bean protein concentrate (UTFP) and chickpea flour (UTCF) using Bacillus subtilis. FMFP and FMCF exhibited higher crude protein, reducing sugar and starch contents more than their counterparts. The increased rate of essential and branched-chain amino acids in FMFP and FMCF exceeded that of crude protein. Adding plant proteins to RF decreased swelling power (SP) and increased solubility in RF-UTFP and RF-FMFP mixtures, while SP and solubility increased in RF-UTCF and RF-FMCF mixtures. All RF-plant protein mixtures showed higher gelatinization temperature and lower gelatinization enthalpy than RF. Thermal gelation was found in all RF-plant protein mixtures, but the RF-FMCF mixture may form weak and unstable gel structures. The increase in pasting viscosity was minimal for the RF-UTFP and RF-FMFP mixtures but more pronounced for the RF-UTCF and RF-FMCF mixtures. Overall, FMFP may be a potential protein source to supplement the protein deficiency in RF with minimal changes in RF-based foods’ rheological and textural properties.
This study aimed to apply rice flour Baromi 2 (B2) varieties developed by the Rural Development Administration in low-sugar baguette products. To achieve this, baguettes were produced using B2 at 10%, 20%, and 30% levels. As the content of B2 increased, the mixing time decreased, and the dough became sticky. Additionally, the dough fermentation ability was reduced. The finished products showed no significant difference in the external structure with varying B2 contents. However, the crust color containing B2 was darker than that of the control. In color value, the L* value decreased as the amount of added B2 increased, while the a* value and b* value increased. Furthermore, the sensory evaluation revealed that baguettes with a higher amount of B2 had a softer crumb and a crunchy crust, and with 20% substituted for B2, the sample obtained the highest score. From these results, it has been determined that B2 can substitute for up to 20% of wheat flour in bakery products.
This study aimed to establish the optimal conditions for producing gluten-free noodles by varying the amount of pregelatinized rice flour added to the regular rice flour and investigating their quality characteristics. With an increase in the amount of added pregelatinized rice flour, the brightness of the noodles decreased, and the color became more yellow both before and after cooking. Adding pregelatinized rice flour to the noodles also increased hardness, elasticity, chewiness, stickiness, and adhesiveness. The textures of the two groups of samples (PR-10 and PR-15) were similar to that of the control, indicating comparable structural characteristics. Furthermore, the absence of gluten made it inherently challenging to form gluten-free noodles. Still, adding pregelatinized rice flour improved the processability of the dough, leading to better noodle formation. An optimal addition of 15% pregelatinized rice flour was deemed suitable for optimal noodle formation in gluten-free noodles. This study established blending conditions using pregelatinized rice flour to improve the poor processability of gluten-free noodles. The findings are expected to be valuable for the industry’s future development of gluten-free processed food.
In this study, when manufacturing Yakgwa, 0, 25, or 50% of embryonic rice flour (ERF) was substituted for wheat flour (WF) to make the dough. After making Yakgwa by hot air frying (HF) or deep-fat frying (DF) methods, physicochemical characterization and acceptance tests were conducted. ERF had a higher water-binding capacity and a lower fat-binding capacity than WF (p<0.05). Yakgwa prepared by HF had lower crude fat contents, peroxide values, and expansion rates, but higher hardnesses, lightnesses, and rednesses (p<0.05) than that prepared by DF. Higher ERF substitution ratios reduced acid values and expansion rates and increased hardness (p<0.05). Acceptance testing showed 0% ERF Yakgwa prepared by HF had a significantly higher acceptance than Yakgwa prepared by DF. HF was found to have a positive effect on product acceptability. Yakgwa prepared with the DF method by substituting WF with ERF resulted in better flavor and overall acceptability than Yakgwa prepared with WF alone (p<0.05).
This study investigated the physicochemical properties and acceptability of yellow layer cake prepared using various levels of wet-milled rice flour (RF). RF was used to substitute 0% (control group), 15% (RF-15 group), 30% (RF-30 group) and 45% (RF-45 group) of wheat flour (WF) to manufacture yellow layer cakes. The substitution of WF with RF showed no significant effect on the pH but decreased the specific gravity and viscosity of the batter. Baking loss rates ranged from 4.65% to 5.03%, showing no significant difference among samples. In the color measurement, the experimental groups showed higher redness (a) and yellowness (b) than the control group (p<0.05). The experimental groups showed lower gumminess and chewiness than the control group. According to the results of intensity measurement of sensory properties, the RF-30 and RF-45 groups showed stronger intensities for darkness, sweetness, moistness and softness than the control group. The acceptance test found that the RF-45 group had significantly higher or similar results for all acceptance attributes than the control group. These results indicate that RF addition as a replacement of WF at a ratio of 45% is optimal for producing yellow layer cakes.
This study investigated the effect of dry heat treatment (DHT) on the physicochemical properties of hard type (HR) and floury type (FR) rice to improve the processing aptitude of rice flour. The rice flour was heated at 130oC for 0, 2 and 4 hours, and the color value, water absorption index (WAI), water soluble index (WSI), swelling power, solubility, pasting properties, particle shape and the X-ray diffraction were measured. After DHT, the L value of rice flour decreased, and the b value increased. The WAI, WSI, swelling power and solubility of HR and FR increased with the increase of treatment time. The cold viscosity and setback increased, while breakdown decreased. Cracks and lumps formed with fine particles were observed. The X-ray diffraction pattern was A-type, while the diffraction intensity decreased. According to the results of the two-way analysis of variance (ANOVA) test, the hydration and pasting properties were significantly different between HR and FR and were affected by DHT time. The results suggest that the properties of modified rice flour by DHT can be used in the food industry.
This study was carried out to investigate milling's effect on the pasting properties and storage stability of dry-milled rice flour. Rice flour's moisture content was increased from 9.48% to 9.80% after going through a rice polisher, and the crude fat content of rice flour was decreased from 0.91% to 0.62% after going through a rice polisher. In the color index of rice flour, the rice polisher was only affected by yellowness. The pasting properties were verified through RVA, and it was confirmed that the use of a rice polisher had no significant effect on the pasting properties. As a result of observing the changes in fatty acid value, it was ascertained that the storage period could be increased using the rice polisher. These results suggest that the rice polisher can increase the storage period without changing the pasting properties.
The physicochemical properties of Korean rice flour cultivars (Saemimyeon [SM], Hanareum No. 4 [HA], and Milyang No. 328 [MY]) with different amylose contents were analyzed and the effects of rice flour blending on their physicochemical property changes were investigated in this study. The swelling power of three different cultivars was similar at 60oC, but MY showed significantly enhanced swelling power at 80oC compared to SM and HA. In the pasting profile, MY showed significantly lower final and break-down viscosities than SM and HA due to its weak granular rigidity. In the case of the 1:1 blending of SM-MY and HA-MY, the measured values of swelling power and solubility were greatly decreased at 80oC, and the setback and final viscosity were significantly increased compared to their predicted arithmetic average values, showing the non-additive effects of blending. For the dynamic viscoelastic properties, SM-MY and HA-MY showed significantly decreased G’ and increased k’ and tanδ, compared to their predicted average values. In conclusion, the selected rice flour blends had non-additive effects on swelling power, solubility, pasting, and dynamic viscoelastic properties. These results showed the feasibility of the rice flour blending to diversify the physicochemical properties of rice flour for better processing suitability.
The value of using rice flour processed into rice powder in preparing porridge was evaluated by measuring the moisture content, pH, total starch, reducing sugar, and color content. The moisture content of the rice flour and the pH of porridge made with rice flour were measured. Rice flour contained 77.55% moisture and the moisture content of the porridge made from rice flour processed into rice powder was 91.40 to 92.47%. The pH of rice flour porridge was acidic at 6.53 to 6.95. The color of the porridge was also measured. The L* values ranged from 82.62 to 97.55, the a* values ranged from -0.09 to 0.08, and the b* values ranged from -2.74 to 1.91.