This study was conducted to find a way to improve quality by observing changes in quality and microbial communities according to whether corn silage was treated with additives and the storage period, and to utilize them as basic research results. The experimental design was performed by 2˟4 factor desigh, and the untreated (CON), and the additive inoculated (ADD) silage were stored and fermented for 30 (TH), 60 (ST), 90 (NT), and 120 (OHT) days, with each condition repeated 3 times. There was no change in the nutrient content of corn silage according to additive treatment and storage period (p>0.05). However, the change in DM and the increase in the relative proportions of lactic acid content and Lactobacillales according to the storage period (p<0.05) indicate that continuous fermentation progressed until OHT days of fermentation. Enterobacterales (33.0%), Flavobacteriales (14.4%), Sphingobacteriales (12.7%), Burkholderiales (9.28%) and Pseudomonadales (6.18%) dominated before fermentation of corn silage, but after fermentation, the diversity of microorganisms decreased sharply due to the dominance of Lactobacillales (69.4%) and Bacillales (11.5%), Eubacteriales (7.59%). Therefore, silage maintained good fermentation quality with or without microbial additives throughout all fermentation periods, but considering the persistence of fermentation even in long-term storage and the aerobic stability, it would be advantageous to use microbial additives.
In recent years, the energy storage sector has experienced a notable transition toward the use of organic electrodes. This shift is largely attributed to their superior energy density, cost-effectiveness, and eco-friendliness. However, there is a main drawback that the organic molecules oftentimes suffer shuttle phenomenon across the separator due to their high solubility in the organic electrolyte. In addition, the low electrical conductivity of organic materials is also detrimental, thereby requiring a large amount of carbon additives (up to 40 wt. %) in the electrode. In this perspective, addition of carbon additives with the desirable amount, which can prevent organic molecules from being dissolved into the liquid phase as well as provide the electrical conductivity. While N,Nʹ-dimethylphenazine (DMPZ) was investigated as a model material, we compared two carbon additives with different surface areas and functional groups. We carefully scrutinized the structural effect of carbon additives on the cycle-life performance of the organic electrode.
본 연구에서는 고투과성 및 높은 염 제거율을 가지는 역삼투막의 성능향상을 위하여 다양한 첨가제 및 계면중합 시 경화 온도 및 시간에 따른 특성평가에 대한 연구가 수행되었다. 첨가제가 없는 막과 첨가제를 첨가한 막의 모폴로지는 모 두 “ridge-and-valley” 구조를 나타내어, 폴리아미드 층이 다공성 지지층 표면에 성공적으로 중합되었음을 확인하였다. 또한 2-Ethyl-1,3-hexanediol (EHD) 첨가함으로써 향상된 친수성과 수투과율 가졌으며, 이는 접촉각 측정을 통해서 확인되었다. 최 종적으로 97.78%와 98.7%의 NaCl 및 MgSO4 제거율과 3.31 L/(m2⋅h⋅bar)의 높은 수투과율을 가진 고투과성 계면중합막을 제조하였다.
PURPOSES : This study was conducted to evaluate the physical properties of the RAP 50 asphalt mixture containing polymer modified rejuvenator and warm-mix additive to improve the recycling rate of RAP and reduce CO2 emission. METHODS : Mix design of Polymer Modified Warm-mix Asphalt Mixture(RAP 50), and Hot Mix Asphalt Mixture(RAP 30) were produced and the properties of asphalt mixture such as Marshall Stability, ITS, Deformation Strength, TSR, and Dynamic Stability were compared between the two asphalt mixtures. RESULTS : The RAP 50 asphalt mixture showed superior or similar performances compared to the RAP 30 asphalt mixture in all the tests conducted. The results of the Marshall stability and dynamic stability in particular were 13,045N and 3,826 pass/mm, which were 11.37% and 76.7% greater than the RAP 30 asphalt mixture, which indicated that high plastic deformation resistance may be expected. CONCLUSIONS : The results obtained from laboratory tests on the two types of mixtures indicated that the use of polymer modified rejuvenator and warm-mix additive not only allows to increase the proportion of RAP but also improves its properties under lower temperature condition than RAP 30 asphalt mixture. Additionally, it was confirmed that plastic deformation resistance was high and moisture resistance and crack resistance were improved for a RAP 50 asphalt mixture.
This study aimed to investigate the effects of amino acid complex additives, such as protected vitamin C (VC) or detoxified sulfur (DS), on the growth and metabolism of Hanwoo cattle under high-temperature conditions. Accordingly, farms in Temperature-Humidity Index (THI) regions ranging from 78 to 89 for over 100 days were selected. The experimental groups were control, T1 (lysine + methionine + VC, 50 g/head/day), and T2 (lysine + methionine + DS, 50 g/head/day) with 70, 77, and 71 animals each. The range of the THI for 115 days was 78-89, and this occurred in most of the experiment days. The results showed that there was no significant difference in rectal temperature among the groups. The body weight increased to 786.4 and 809.0kg in the T1 and T2 groups, respectively, compared to the control group (p<0.05). Linoleic acid showed a high result of 2.01% in the T1 group compared to the control group (p<0.05). Unsaturated fatty acids were higher at 55.70 and 56.54% in the T1 and T2 groups, respectively, compared to the control group (p<0.05), and the omega 6/3 ratio was reduced to 20.10% (p<0.05). These findings indicate that T1 has a positive impact on growth, meat quality, and fatty acid composition compared to the control group. In conclusion, amino acid complex with VC improved the body weight of Hanwoo steers and the unsaturated fatty acids and essential amino acids of their meat; however, further research is needed to clarify this impact on carcass performance.
Asphalt concrete, which is used as a road base material, accounts for >90% of a road pavement. A huge amount of waste concrete and waste asphalt concrete aggregates are generated. Recently, carbon neutrality is promoted across all industries for sustainability. Therefore, to achieve carbon neutrality in the asphalt concrete industry, waste asphalt concrete aggregates should be recycled. Additionally, road base materials are prepared using additives to ensure structural stability, durability, and economic efficiency. In this study, recycled asphalt concrete aggregates were used to evaluate the physical properties of road base materials according to the type of polymer additive and mixing method, and the applicability of road base each material was evaluated. Results showed that when the acrylate-based polymer additive was mixed, the uniaxial compressive strength was 30% higher. Furthermore, the compressive strength of the split mix was improved by ~29% compared to the total mix.
목적 : 최근 전자기기의 발달로 인해 근거리 작업이 증가하고 있으며, 이로 인해 안 건강에 대한 우려가 증가함 에 따라 청광 차단에 대한 관심이 증가하고 있다.
방법 : 유해 광선 차단이 가능한 기능성 콘택트렌즈 소재 개발을 위해 reactive yellow 86을 안료 중합체에, 그리고 propyl gallate를 실리콘 하이드로겔 소재에 첨가제로 각각 사용하여 안 의료용 소프트 콘택트렌즈 제조에 적용하였다.
결과 : propyl gallate의 첨가량에 따라 접촉각이 68.25~42.50˚로 측정되었으며, 습윤성이 향상되는 것으로 나타났다. 또한, 제조된 컬러 소프트 콘택트렌즈는 산소투과성 및 습윤성이 우수함과 동시에 자외선 및 청광 차단 효과를 나타내었다.
결론 : reactive yellow 86 및 propyl gallate가 적용된 컬러 콘택트렌즈의 재료의 경우, 기본적인 안 의료용 하이드로젤 렌즈의 물성을 만족시킴과 동시에 우수한 자외선 및 청광차단 효과를 가지는 것으로 판단된다.
본 연구에서는 미생물 첨가에 따라 거세한우 비육우 분의 이화 학적 특성, 미생물 성상, 가스발생량 및 퇴비 부숙도에 미치는 영 향을 규명하고자 수행하였다. 이상의 결과를 종합하면, 4주 후,미생물 첨가구에서 수분, 유기물, 총질소 함량 및 pH가 낮았으며, 나머지 이화학적 특성에서는 차이가 나타나지 않았다. 유산균과 효모균 수는 증가하였으며, 대장균 수는 감소하였다. 12주 후, 미 생물 첨가구에서 유산균과 고초균 수는 높았으나, 수분, 효모 및 대장균 수는 낮게 낮았다. 하지만 암모니아, 황화수소 발생량과 퇴비 부숙도는 미생물 첨가에 의한 효과가 나타나지 않았다. 따라 서, 거세한우 분에 미생물을 첨가하면 유익균은 증가하고, 병원성 미생물은 감소하여, 비육우의 생산성은 증진될 것으로 사료되지 만, 가스 발생량 및 퇴비 부숙도에 대한 추가적인 연구는 지속적 으로 수행되어야 할 것으로 사료된다.
The present study investigated effects of microbial additives and silo density on chemical compositions, fermentation indices, and aerobic stability of whole crop rice (WCR) silage. The WCR (“Youngwoo”) was harvested at 49.7% dry matter (DM), and ensiled into 500 kg bale silo with two different compaction pressures at 430 kgf (kilogram-force)/cm2 (LOW) and 760 kgf/cm2 (HIGH) densities. All WCR forage were applied distilled water (CON) or mixed inoculants (Lactobacillus brevis 5M2 and Lactobacillus buchneri 6M1) with 1:1 ratio at 1x105 colony forming unit/g (INO). The concentrations of DM, crude protein, ether extract, crude ash, neutral detergent fiber, and acid detergent fiber of whole crop rice before ensiling were 49.7, 9.59, 2.85, 6.74, 39.7, and 21.9%, respectively. Microbial additives and silo density did not affect the chemical compositions of WCR silage (p>0.05). The INO silages had lower lactate (p<0.001), but higher propionate (p<0.001). The LOW silages had higher lactate (p=0.004). The INO silages had higher yeast count (p<0.001) and aerobic stability (p<0.001). However, microbial counts and aerobic stability were not affected by silo density. Therefore, this study concluded that fermentation quality of WCR silage improved by microbial additives, but no effects by silo density.
As the design life of nuclear power plants are coming to the end, starting with Kori unit 1, nuclear power related organizations have been actively conducted research on the treatment of nuclear power plant decommissioning waste. In this study, among various types of radioactive waste, stabilization and volume reduction experiments were conducted on radioactive contaminated soil waste. Korea has no experience in decommissioning nuclear power plants, but a large amount of radioactively contaminated soil waste was generated during the decommissioning of the KAERI research reactor (TRIGA Mark- II) and the uranium conversion facility. This case shows the possibility of generating radioactive soil waste from nuclear power plants and nuclear-related facilities sites. Soil waste should be solidified, because its fluidity and dispersibility wastes specified in the notification of the Korea Nuclear Safety and Security Commission. In addition, the solidified waste forms should have sufficient mechanical strength and water resistance. Numerous minerals in the soil are components that can make glass and ceramics, for this reason, glass-ceramic sintered body can be made by appropriate heat and pressure. The sintering conditions of soil were optimized, in order to make better economical and more stable sintered body, some additives (such as additives for glass were mixed) with the soil and sintering experiments were conducted. Uncontaminated natural soil was collected and used for the experiment after air drying. Moisture content, pH, bulk density, and organic content were measured to understand the basic properties of soil, and physicochemical properties of the soil were identified by XRD, XRF, TG, and SEM-EDS analysis. In order to understand the distribution by particle size of the soil, it was divided into Sand (0.05–2 mm) and Fines (< 0.05 mm). The green body was manufactured in the form of a cylinder with a diameter of 13mm and a height of about 10mm. Appropriate pressure (> 150 MPa) was applied to the soil to make a green body, and appropriate heat (> 800°C) was applied to the sintered body to make a sintered body. The sintering was conducted in a muffle furnace in air conditions. The volume reduction and compressive strength of the sintered body for each condition were evaluated.
본 연구에서는 채소정식을 위한 정식기에 사용하는 생분해성 포트를 개발하기 위하여 생분해성 첨가제의 비율에 따라 포트의 물성 및 식물의 생장 차이를 구명하였다. 본 실험에 사용된 생분해포트의 주원료는 크라프트지와 신문고지였고, 생분해성 포트는 주 배합비에서 내첨첨가제의 함량을 주원료 대비 각 3%, 5%로 제조하였다. 본 실험에서 8주 육묘 후 포트의 물리적 특성과 첨가제에 따른 변화를 알아보기 위해 포트의 인장강도, 두께, 무게 등을 조사하였다. 생분해성 첨가제가 함유된 포트와 일반 PE포트에 식물 생장도 비교하였다. 2주차에서 5주차에는 매주 배추의 생육조사를 진행했고, 5주차에서 8주차에는 고추생육조사를 진행하였다. 식물의 생장은 뿌리신선중(g), 지상부 시선중(g), 옆 장(cm), 옆 폭(cm)등을 측정하였다. 생분해성 포트에서의 식물 생장은 플라스틱 포트에 비해 생육이 저조하게 나타났다. 생분해성 포트의 무게와 두께는 첨가제 함량에 따라 낮은 상관성을 보였지만, 인장강도의 경우 차이를 보여 내첨제의 비율에 따라 생육에 영향을 미치는 것으로 나타났다. 그러나 첨가제는 무게와 두께에는 영향을 미치지 않아 포트의 생분해 능력에는 영향이 없는 것으로 판단된다. 본 연구는 생분해성 식물 포트 개발의 기초자료가 될 것으로 기대된다.