We investigated the effects of supercritical-CO2 treatment on the pore structure and consequent H2 adsorption behavior of single-walled carbon nanohorns (SWCNHs) and SWCNH aggregates. High-resolution transmission electron microscopy and adsorption characterization techniques were employed to elucidate the alterations in the SWCNH morphology and aggregate pore characteristics induced by supercritical-CO2 treatment. Our results confirm that supercritical-CO2 treatment reduces the interstitial pore surface area and volume of SWCNH aggregates, notably affecting the adsorption of N2 (77 K), CO2 (273 K), and H2 (77 K) gasses. The interstitial porosity strongly depends on the supercritical-CO2 pressure. Supercritical-CO2 treatment softens the individual SWCNHs and opens the core of SWCNH aggregates, producing a partially orientated structure with interstitial ultramicropores. These nanopores are formed by the diffusion and intercalation of CO2 molecules during treatment. An increase in the amount of H2 adsorbed per interstitial micropore of the supercritically modified SWCNHs was observed. Moreover, the increase in the number and volume of ultramicropores enable the selective adsorption of H2 and CO2 molecules. This study reveals that supercritical-CO2 treatment can modulate the pore structure of SWCNH aggregates and provides an effective strategy for tailoring the H2 adsorption properties of nanomaterials.
Nasopharyngeal stenosis is defined as a morphological transition of narrowing at the nasopharyngeal region. A 2-yearold, castrated male, Korean short hair cat was referred to the animal medical center, Gyeongsang National University. According to clinical signs, diagnostic imaging, and physical examination, nasopharyngeal stenosis was diagnosed. The staphylectomy was performed using a CO2 laser, and there were not any post-operative complications. The patient was discharged in two days. This report describes the case of nasopharyngeal stenosis in cat and represents that laser ablation could be a good option for surgical management of the nasopharyngeal region with a low complication rate.
Ultra-violet (UV) light is one of abiotic stress factors and causes oxidative stress in plants, but a suitable level of UV radiation can be used to enhance the phytochemical content of plants. The accumulation of antioxidant phenolic compounds in UV-exposed plants may vary depending on the conditions of plant (species, cultivar, age, etc.) and UV (wavelength, energy, irradiation period, etc.). To date, however, little research has been conducted on how leaf thickness affects the pattern of phytochemical accumulation. In this study, we conducted an experiment to find out how the antioxidant phenolic content of kale (Brassica oleracea var. acephala) leaves with different thicknesses react to UV-A light. Kale seedlings were grown in a controlled growth chamber for four weeks under the following conditions: 20°C temperature, 60% relative humidity, 12-hour photoperiod, light source (fluorescent lamp), and photosynthetic photon flux density of 121±10 μmol m-2 s-1. The kale plants were then transferred to two chambers with different CO2 concentrations (382±3.2 and 1,027±11.7 μmol mol-1), and grown for 10 days. After then, each group of kale plants were subjected to UV-A LED (275+285 nm at peak wavelength) light of 25.4 W m-2 for 5 days. As a result, when kale plants with thickened leaves from treatment with high CO2 were exposed to UV-A, they had lower UV sensitivity than thinner leaves. The Fv/Fm (maximum quantum yield on photosystem II) in the leaves of kale exposed to UV-A in a low-concentration CO2 environment decreased abruptly and significantly immediately after UV treatment, but not in kale leaves exposed to UV-A in a high-concentration CO2 environment. The accumulation pattern of total phenolic content, antioxidant capacity and individual phenolic compounds varied according to leaf thickness. In conclusion, this experiment suggests that the UV intensity should vary based on the leaf thickness (age etc.) during UV treatment for phytochemical enhancement.
The disposal of organic pollutants is one of the important research topics. Some of the studies in this field are based on the degradation of organic pollutants with a catalytic agent. The cobalt tetraoxide/peroxymonosulfate system is an important catalytic system used for the radical degradation of organic pollutants. To increase the catalytic efficiency of such reactions, graphitization of activated carbon used as a support solid and nitrogen doping to the carbon structure are commonly used methods. In this study, cobalt tetraoxide production, N-doping and graphitization were carried out in a single step by heat treatment of activated carbon doped with the phthlocyanine cobalt (II) complex. The catalytic performance of the catalyst/ peroxymonosulfate system was investigated by changing the pH, catalyst, and PMS concentration parameters on rhodamine B and 1,3,5 trichlorophenol, which were used as models. It was seen that the catalysts had 97% activity on rhodamine B in 16 min and 100% on 1,3,5 trichlorophenol in 6 min. It was observed that the catalysts continued to show high catalytic activity for five cycles in reusability studies and had a very low cobalt leaching rate. These results are in good agreement with previously published studies. In line with these results, the synthesized N-doped graphitic carbon/Co3O4 catalyst can be used as an effective catalyst for wastewater treatments.
Removing CO2 gas to address the global climate crisis is one of the most urgent agendas. To improve the CO2 adsorption ability of activated carbon, nitrogen plasma surface treatment was conducted. The effect of nitrogen plasma treatment on the surface chemistry and pore geometry of activated carbon was extensively analyzed. The porosity and surface groups of the activated carbon varied with the plasma treatment time. By plasma treatment for a few minutes, the microporosity and surface functionality could be simultaneously controlled. The changed microporosity and nitrogen groups affected the CO2 adsorption capacity and CO2 adsorption selectivity over N2. This simultaneous surface etching and functionalization effect could be achieved with a short operating time and low energy consumption.
The object of this study is to feasibility assesment for co-digestion efficiency of food waste recycling wastewater(FWR) with thermal hydrolysis process dehydration cake (THP Sludge). As a result of THP pre-treatment experimental conditions to 160oC and 30 minutes, the solubility rate(conversion rate of TCOD to SCOD) of the THP sludge increased by 34%. And the bio-methane potential in the THP sludge increased by about 1.42 times from 0.230 to 0.328 m3 CH4/kg VS compared to the non-pre-treatment. The substrates of the co-digestion reactor were FWR and THP sludge at a 1:1 ratio. Whereas, only FWR was used as a substrate in the digestion reactor as a control group. The experimental conditions are 28.5 days of hydraulic retention time(HRT) and 3.5 kg VS/m3-day of organic loading rate(OLR). During the 120 days operation period, the co-digestion reactor was able to operate stably in terms of water quality and methane production, but the FWR digestion reactor deteriorated after 90 days, and methane production decreased to 0.233 m3 CH4/kg VS, which is 67% of normal condition. After 120 days of the experiment, organic loading rate(OLR) of co-digestion reactor was gradually increased to 4.5 kg VS/m3-day and operated for 80 days. Methane production during 80 days was evaluated to be good at the level of 0.349 m3 CH4/kg VS. As a result of evaluating the dehydration efficiency of the sludge before/after 150-180oC THP using a filter press, it was confirmed that the moisture content of the sludge treated before THP at 180oC was 75% and improved by 8% from 83-85% level. Therefore, it is expected that the co-digestion reactor of FWR and THP sludge will ensure stable treatment water quality and increase bio-methane production and reduction effect of dehydration sludge volume.
대표적인 상업화된 박테리오신인 나이신은 Listeria monocytogenes 및 Staphylococcus aureus와 같은 병원성 세균에 대해 강력한 항균 활성을 보인다. 본 연구에서는 시판되는 나이신 제품을 박테리오파지 SAP84와 함께 병용 처리했을 때 S. aureus 억제에 대한 상승효과에 대하여 평가했다. S. aureus KCTC 3881 균주에 대해 나이신은 농도의존적으로 생균수를 감소시켰으며 18 IU/mL의 나이신은 대조구와 비교하여 6시간째에 4.03 Log CFU/mL의 균수가 감소된 반면, 동일 용량의 나이신이 박테리오파지 SAP84 (0.1 MOI)와 병용처리 되었을 때 5.54 Log CFU/mL의 생균수 감소가 관찰되었다. 또한 나이신과 SAP84 의 조합은 양상추에서 S. aureus 균주를 효과적으로 제어하는데 성공적으로 적용되었다.
수경재배시 양액 내 탄산정 처리를 통한 상추의 생육 및 생리활성물질 변화를 조사하기 위해 네덜란드에서 시판되는 고형 탄산정을 사용하였다. 실험은 무처리를 대조구로 하여 0.5 배, 1배, 2배 처리구로 구성하였다. 실험결과, 탄산정 처리 후 챔버내 대기 CO2 농도는 처리 직후 2배 처리구에서 472.2μL·L -1 로 가장 높은 수치를 보였으며, 양액내 pH는 2배 처리구는 pH 6.03로 가장 많이 감소하였다. 이후 시간이 경과함에 따라 CO2 농도와 pH는 처리 전 수준으로 회복하는 모습을 나타냈다. 상추의 엽폭과 엽면적은 탄산정 2배 처리시 17.1cm, 1067cm 2로 가장 큰 값을 나타내었으며 지상부 생체중, 건물 중은 0.5배 처리구에서 63.87g, 3.08g으로 가장 높게 나타났다. 상추의 근장은 대조구에서 28.4cm로 가장 길었으나 처리 구들간에 지하부의 생체중, 건물중은 유의적인 차이를 나타내지 않았다. 외관상 탄산정 처리에 의해 상추의 근장이 짧아 지고 곁뿌리가 많이 발생한 것이 관찰되었다. 또한 뿌리가 갈색으로 약간 변하는 결과가 있었지만, 지상부 생육에는 부정적인 영향을 미치지 않은 것으로 나타났다. 탄산정 처리에 의 한상추의 생리활성물질을 분석한 결과 chlorogenic acid와 quercetin 두가지 물질이 검출되었으며 이를 정량분석한 결과 1배 처리구에서 chlrogenic acid는 대조구보다 249% 증가하였지만 quercetin은 37% 감소한 결과를 나타냈다. 항산화 활 성을 나타내는 DPPH 라디컬 소거능을 비교한 결과 대조구와 0.5배 처리가 1배, 2배 처리보다 유의적으로 높은 값을 나타냈다. 이를 통해 탄산정 처리가 수경재배 상추의 생육과 생리활 성물질을 증대에 효과가 있음을 제시한다.
느타리버섯 곤지7호의 수확 후 CO2 처리에 의한 품질 유지 효과 및 적정 처리 농도를 구명하고자 연구를 수행하였다. 수확한 버섯을 3°C에서 1일간 예냉 후에 CO2 농도 0, 30 및 50%에서 3시간 처리한 다음 20 μm 두께 OPP필름 봉지에 밀봉하여 3°C에 21일 저장하였다. 30% CO2 처리에서 대조직의 경도가 저장 21일까지 높게 유지 되었고, 대조직의 색은 명도(CIE L*값)가 30% CO2 처리 한 느타리버섯이 저장 14일, 21일에 높고 황색도(CIE b* 값)가 저장 2일, 7일에 낮게 나타났으며 외관품위가 저장 7일부터 저장기간 내내 대조구와 50% CO2 처리에 비해 높았으며 3°C 저장 중 17일까지 느타리버섯 곤지7호의 상품성을 유지하였다. 30% CO2 농도로 3시간 처리가 느타리버섯 곤지7호의 저온저장 중 품질 유지기간을 연장할 수 있는 수확 후 처리방법으로 판단되었다.
In order to industrialization of the entomopathogenic nematode (EPN) isolated in Korea, it is necessary to switch to infective juveniles. Since the conversion to infective juveniles in the end of solid culture is important against the outside environment, it has a great influence on insecticidal efficacy and shelf life. We investigated whether the concentration of CO2 and NH3 at the end of the solid culture was artificially increased to affect the infective juvenile induction rate. Optimal exposure time for conversion to infective juveniles was 5 minutes for CO2 and 3 minutes for NH3. Optimal treatment time was 9 days after EPN inoculation for both CO2 and NH3. And optimum concentration was 80~90% for both CO2 and NH3 for EPN infective juveniles stage conversion.
CO2 separation technology for carbon capture, which is one of the hot issues to reduce greenhouse gases from industrial flue gas, has been intensively investigated so far. Despite of several benefits, the membrane technology has some obstacles like large-scale module fabrication, membrane durability, need of pre-treatment or high pressure drive for its industrial application. Also, the power plant flue gas with normally 10~20% of CO2 content should be concentrated upto 99% for being compressed and liquefied to transportable CO2 by pipeline, indicating the need of high selective membrane process as well as high recovery. In this work, the possibility of membrane process for post-combustion treatment in terms of recent technology will be announced. The practically applicable process for CO2 capture also be suggested briefly.
Sludge transporting pipes in wastewater treatment plant are easy to be clogged with struvite when the digested sludge and dehydrated filtrate are transported through the pipes, which lowers the efficiency of sludge treatment system in a WWTP. pH is one of the most important factors in struvite formation, and carbon dioxide separated from biogas can be used to control pH and struvite formation. By controlling pH, the amount of dehydrating agent can be reduced by about 10%, which saves the budget for facility maintenance. As CO2 is reused and dehydrating chemicals are saved, the approach can contribute to global warming gas reduction.
The effects of Postharvest CO2 treatment on the quality and shelf life of oyster mushroom packaged with oriented polypropylene (OPP) film bag were investigated. On the day of harvest, the ‘Gonji-7ho’ oyster mushroom grown by bottle cultivation of Jangheung County, Korea transferred to a laboratory in Wanju County and were cooled in a cold room at 3°C for 1 day and then treated with 30% or 50% CO2 for 3 hours at 3°C. After the CO2 treatment, 400 g of oyster mushroom were sealed into 20 μm thick OPP film bag (width: 29 cm, length: 24 cm) used in the actual farmhouse. The package gas composition, hardness, color change, off-flavor index, browning index, and overall quality were evaluated during storage at room temperature (RT) for 6 days and at 3°C for 21 days. As a result, During storage at RT, the concentration of carbon dioxide in the bag of 30%, 50% CO2 were higher than untreated and shelf-life of oyster mushroom at 50% CO2 was reduced 1 day due to off-flavor while 30% CO2 or untreated was 2 days. During storage at 3°C, the concentration of carbon dioxide in the bag was kept low at 30%, 50% CO2 treatment compared to untreated, the respiration of oyster mushroom at 30, 50% CO2 were lower than untreated during initial 7 days storage at 3°C, but ethylene production were not different. The hardness of oyster mushroom at 30% CO2 was higher, the lightness (L* value) of stem surface was higher, the yellowness (b* value), browning index was lower and odor index was lower than untreated or 50% CO2. 30% CO2 treated oyster mushroom packaged with OPP film bag kept 4.2~16.2% O2 and 4.2~15.5% CO2 concentration in the bag during storage at 3°C, and showed highest overall quality index. Marketable shelf-life was assessed 10 days for untreated, 17 days for 30% CO2, and 16 days for 50% CO2, respectively.
This study was aimed to examine the potential of pre- and post-harvest treatment of chitosan and high pCO2 on the shelf-life of oriental melon fruit. Post-harvest dipping treatment of chitosan and high pCO2 did not bring any significant effect on the freshness of fruit in general, even at 1% of chitosan. Unlike post-harvest treatment, pre-harvest spray of chitosan significantly increased fruit firmness and firmness increase was higher in double sprays than single one. The internal quality such as soluble solid content and acidity was not altered by chitosan spray. No additional effect of high pCO2 with pre-harvest treatment of chitosan was found. Double sprays of chitosan showed significant effect on keeping visual appearance through delaying the incidence of skin browning. There was a potential of pre-harvest chitosan treatment on the shelf-life increase of oriental melon fruit and double sprays were better than single spray. However, high pCO2 seemed not to be effective on the storability of oriental melon fruit.
Activated carbons (ACs) have been used as EDLC (electric double-layer capacitor) electrode materials due to their high specific area, stability, and ecological advantages. In order to prepare ACs with high density and crystallinity, coal tar pitch (CTP) was activated by K2CO3 and the textural and electrochemical properties of the obtained ACs were investigated. Although the CTP ACs formed by K2CO3 activation had much smaller specific surface area and pore volume than did the CTP ACs formed by KOH activation, their volumetric specific capacitance (F/cc) levels as electrode materials for EDLC were comparable due to their higher density and micro-crystallinity. Structural characterization and EDLC-electrode performance were studied with different activation conditions of CTP/K2CO3 ratio, activation temperature, and activation period.
Edible meat co-products (ECoPs) have recently received significant attention, particularly those for human consumption, because of the nutritional advantages of by-products and the worldwide emphasis on reducing economical loss by wasting. According to the regulations of the Animal and Plant Quarantine Agency in Korea, Korean edible by-products include more diverse internal organs than other nations, such as liver, lung, heart, stomach, pancreas, spleen, kidney, small intestine and colon, but there are no specific regulations for processing these by-products in Korea. Food borne pathogens such as salmonella, campylobacter and E.coli commonly reside in the gut flora of animals, including those that are clinically healthy. It is therefore very important that hygiene requirements are followed when stomachs and intestines are treated for human consumption, in order to prevent these pathogens passing into the human food chain. The requirements for these products have not always been well understood, and the guide attempts to explain these in a way that is helpful for operators.
The heat treatment machine based on immersion was developed to reduce temperature difference during netting process and appraised it performance compared current heat treatment machine using high pressure. It was also reviewed the optimum heat treatment procedures for PBSAT monofilament net in accordance with the immersion time and temperature. The procedure was based on physical measurement such as breaking load, elongation and angle of the mesh for PBSAT monofilament. The water temperature gap of the treatment machine based on immersion was less than 1°C. and the energy consumption was also increased in high temperature condition. It was identified that the optimum temperature was 75°C and its optimum processing time was between 15 minutes and 20 minutes to get qualified physical properties.
This study investigated the effect of a co-culture of Scenedesmus dimorphus and nitrifiers using artificial wastewater on the removal of ammonium, nitrate and phosphate in the advanced treatment. To test the synergistic effect of the co-culture, we compared the co-culture treatment with the cultures using S. dimorphus-only and nitrifiers-only treatment as controls. After 6 days of incubation, nitrate was removed only in the co-culture treatment and total amount of N removal was 1.3 times and 1.6 times higher in the co-culture treatment compared to those in the S. dimorphus- and nitrifiers-only treatments, respectively. In case of total amount of P, co-culture treatment removed 1.2 times and 12 times more P than the S. dimorphus -and nitrifiers-only conditions, respectively. This indicates that the co-culture improved removal rates for ammonium, nitrate, and phosphate. This further implies that there was no need for denitrification of nitrate and luxury uptake of P processes because nitrate and phosphate can be removed from the uptake by S. dimorphus. In addition, co-culture condition maintained high DO above 7 mg/L without artificial aeration, which is enough for nitrification, implying that co-culture has a potential to decrease or remove aeration cost in the wastewater treatment plants.
큰느타리버섯은 장거리 해상운송 후 갈변 및 조직 물러 짐에 의한 품질저하가 클레임의 원인이 되는데, 수출 중 신선도 유지를 위한 전처리 기술을 개발하고자 CO2 처리 의 효과를 검증하였다. 버섯의 수확후 5 o C에서 30, 50% 농도의 CO2를 3시간 처리하고 관행적인 방법으로 필름 포장한 다음 20 o C와 5 o C에 저장하며 무처리와의 품질을 비교분석하였다. CO2 처리구는 무처리에 비해 저장 중 조 직 경도와 색도(Hunter ‘L’, ‘b’)를 유지하였고, 관능평가 에서도 품질이 급격히 저하되는 저온저장 3주차에 조직 물러짐 정도와 갈변지수가 낮아 신선도 유지에 효과가 있 었다. CO2 처리 농도 중 30% 처리구가 50%에 비해 상품 성이 높았으며 무처리에 비해서는 5 o C에서 약 1주일간 신 선도 유지기간이 연장되었다. 따라서 큰느타리버섯의 장 거리 해상운송 중 품질유지를 위한 전처리 방법으로 CO2 처리가 효과가 있는 것으로 판단되며 현장적용을 위해 효 과가 있는 CO2 처리농도의 범위 및 장해를 유발하는 한 계농도의 설정과 처리시간 등 추가적인 실험이 요구된다.