The present study, black soldier flies (Hermetia illucens) fermented using lactic acid bacteria were powdered without defatting and added to 3% or 5% to make pig feed. Weaning piglets were fed 3% (T3) or 5% (T5) feed powdered with Hermetia illucens for 5 months and the efficacy of the feed was investigated. The results of measuring body weight gain over 5 months after adding 3% (T3) or 5% (T5) of Hermetia illucens powder to the feed of weaned piglets showed significant weight gain in the T5 group compared to the control group. The added feed to Hermetia illucens powder did not show toxicity, and analysis of its effect on blood properties showed that white blood cell levels tended to increase in the T3 or T5 group compared to the control group.The only increase in white blood cell count was a change within the normal range. As a result of analyzing the effect of the level of addition of Hermetia illucens powder on feces, the effect of liquid reduction showed excellent results in the T3 treatment group and maintained the best form of feces. In this study, the thawing loss in the control group was 6.66%, and the T3 group with added powder to Hermetia illucens showed a significant decrease of 5.03%, and the T5 group also showed a decrease of 5.61%. Therefore, it was demonstrated that additive feed for Hermetia illucens reduced thawing loss, affected the water holding capacity of meat, and played an important role in maintaining the taste of meat. Moreover, the results of carcass grade showed a tendency for one grade to increase in the T3 and T5 groups fed additive feed to Hermetia illucens compared to the control group. In conclusion, the results of this study suggest that feed supplemented with Hermetia illucens is effective in influencing the weight gain of pigs, reducing the liquid content of feces, and increasing carcass grade.
Democratic People’s Republic of Korea (DPRK) has produced weapon-grade plutonium in a graphite-moderated experimental reactor at the Yongbyon nuclear facilities. The amount of plutonium produced can be estimated using the Graphite Isotope Ratio Method (GIRM), even without considering specific operational histories. However, the result depends to some degree on the operational cycle length. Moreover, an optimal cycle length can maximize the number of nuclear weapons made from the plutonium produced. For conservatism, it should be assumed that the target reactor was operated with an optimal cycle length. This study investigated the optimal cycle length using which the Calder Hall MAGNOX reactor can achieve the maximum annual production of nuclear weapons. The results show that lower enrichment fuel produced a greater number of critical plutonium spheres with a shorter optimal cycle length. Specifically, depleted uranium (0.69wt%) produced 5.561 critical plutonium spheres annually with optimal cycle lengths of 251 effective full power days. This research is crucial for understanding DPRK’s potential for nuclear weapon production and highlights the importance of reactor operational strategy in maximizing the production of weapons-grade plutonium in MAGNOX reactors.
중앙분리대 콘크리트 방호울타리(Concrete Median Barriers, CMB)는 마주 달리는 차량과의 정면충 돌을 예방할 뿐만 아니라 탑승자의 상해 및 차량의 파손까지 최소화하는 중요한 안전시설 중 하나이 다. 현재 국내의 CMB는 설계속도에 따라 등급이 정해지고, 이에 맞는 성능 평가를 실시하게 된다. 현 재 국내의 특수구간을 제외한 저속구간 및 일반구간(60~80km/hr)에서는 SB4등급 이하의 CMB가 사 용되고 있으며, 고속구간(100km/h 이상 도로)에서는 SB5등급 이상의 CMB가 사용된다. 그중 고속국 도에 시공되는 SB5등급 이상의 CMB에 대한 연구는 지속해서 수행되는 반면 일반국도에 대한 CMB 연구는 비교적 부족한 실정이다. 따라서 본 연구에서는 일반국도에 시공되는 SB4등급의 효율적인 단 면을 찾기 위한 해석적 연구가 수행되었다. 단면 형상은 1, 2차 충돌에 큰 영향을 미치는 단면의 높이 와 최하단부의 곡률 반경이 고려되었다. 유한요소 해석에 사용된 차량은 미국 교통부(U.S Department of Transportation)에서 제공한 16톤 트럭을 국내 차량과 비슷한 형태로 개선한 차량이었다. 해석 결과 로, 트럭의 충돌 후 단면 형상에 따라 발생한 트럭의 거동, 콘크리트 비산량, 소성변형이 비교되었다.
택코트란 아스팔트 포장 공사 시 기존 아스팔트층과 신설 아스팔트 층 사이에 부착성을 증가시키기 위하여 사용되는 재료이다. 교통 하중으로 인해 포장 경계면에서 수평전단응력 및 수직인장응력이 발생하게 되는데 택코트의 유실, 양생 부족 등의 문제로 접착 성능 이 부족하면 포장층의 분리, 밀림과 같은 도로 파괴가 형상이 나타날 수 있다. 현재 국내에서는 국토교통부 아스팔트 콘크리트 포장 시공 지침에 택코트 살포량에 대한 기준은 존재하지만 기존 및 신설 아스팔트 포장층 사이에 택코트의 접착강도에 대한 기준은 존재 하지 않는 실정이다, 이는 접착강도 특성이 분석되지 않은 택코트를 사용함에 따라 아스팔트 포장의 공용성 측면에서 문제를 초래할 수 있다. 따라서 본 연구에서는 PG등급이 다른 택코트 4종류에 대한 인장 및 전단접착강도를 확인하기 위하여 인장접착강도 시험, 전 단접착강도 시험을 진행하였다. 택코트의 양생정도에 따른 접착강도 특성을 확인해보기 위하여 택코트의 수분이 증발됨에 따라 중량 변화가 없는 상태를 양생 100%로 하여 양생 0%, 50%, 100%로 진행하였으며, 살포량은 국토교통부 아스팔트 콘크리트 시공 지침에 따 라 0.5ℓ/m2로 진행하였다. 사용된 택코트 종류에 관계 없이 양생 정도가 증가함에 따라 접착강도는 증가하는 추세를 보였으며, 인장 및 전단접착강도 시험에 관계없이 초기 양생(양생 0%~50%)보다 양생 50% 이후에서의 더 높게 강도가 발현된 것을 확인하였다. 또한 PG등급이 높은 택코트가 인장 및 전단접착강도에 관계없이 접착강도 성능이 우수한 것을 확인할 수 있었다. 추후 택코트의 종류를 추 가하여 PG등급이 분류가 이루어진 후에 접착강도 시험을 진행하여 결과를 확인할 예정이다.
This study aimed to investigate the relationship between the nutrition quotient and the dietary intake of adolescents. A total of 393 adolescents were surveyed to evaluate their Nutrition Quotient for Korean Adolescents (NQ-A) scores and dietary intake. The average age of the survey subjects was 15 years and the average NQ-A score of the subjects was 49.11±13.35. There was no significant difference in the NQ-A scores according to gender and age. The average dietary diversity score was 3.77±0.85, and it was significantly higher in boys than in girls (p< .05) with the scores of 12-14-year-old students being significantly higher than those aged 15-18 years (p< .01). The results of comparing the percentage of recommended intake or adequate intake and the mean adequacy ratio (MAR) according to the NQ-A grade, showed that the ‘High’ grade had a significantly higher intake percentage of vitamin B1, B12, folate, phosphorus, iron and a significantly higher MAR (p< .05). From a long-term perspective, efforts to improve dietary habits are deemed necessary to meet an individual’s nutritional requirements. Adolescents themselves should develop proper eating behaviors and acquire suitable dietary management skills to enhance their nutritional status, ultimately contributing to an improvement in their quality of life.
This study reports an analytical investigation on the development of SB4-grade separated concrete median barriers. The proposed barrier sections comprise three designs, with heights of 810, 1000, and 1270 mm and upper widths of 90, 120, and 120 mm, respectively. Before conducting collision analyses on the proposed sections, the considered collision analysis model was validated using real collision test results; the model was found to accurately predict the real collision test results. The proposed cross-sections were modeled to perform collision analysis according to SB4-grade collision conditions. Results indicated that increasing the cross-section height increased the damaged area and decreased the strength, while the occupant protection performance remained mostly unaffected. Furthermore, the proposed cross-sections met the strength and occupant protection performance criteria specified in domestic guidelines, suggesting their suitability as a separated concrete median barrier for bridges.
Montmorillonite, a versatile clay mineral with a wide range of industrial applications, is often found in natural deposits with impurities that limit its effectiveness. This study investigates the use of column froth flotation as an innovative technique to improve the purity of montmorillonite by selectively removing impurities without affecting its essential properties. Column froth flotation, a well-established mineral separation method, is adapted to address the specific challenges associated with enhancing montmorillonite purity. The process involves conditioning raw montmorillonite with carefully chosen reagents to selectively separate impurities, including quartz, feldspar, and other minerals commonly found alongside montmorillonite in natural deposits. Experimental results confirm the effectiveness of column froth flotation in significantly enhancing the purity of montmorillonite. This method allows for efficient impurity removal while preserving the essential properties of montmorillonite, making it suitable for various industrial applications. The study also explores the optimal conditions and reagent choices to maximize the purification process. In conclusion, column froth flotation offers a promising avenue for enhancing montmorillonite purity without compromising its fundamental properties. This study provides valuable insights into optimizing the process for large-scale industrial applications, facilitating the development of highquality montmorillonite products tailored to specific industrial needs.
Hydride reorientation is widely known as one of the major degradation mechanisms in Zirconium cladding during dry storage. Some previous theoretical models for hydride reorientation used assumption of an ideal radial basal pole orientation for HCP structure of Zirconium cladding. Under this assumption, circumferential hydride was considered to precipitate in the basal plane while radial hydride was considered to precipitate in the prismatic plane, thereby giving energetical penalty on thermodynamical precipitation of radial hydrides. However, in reality, reactor-grade Zirconium cladding exhibits average 30° tilted texture, adding complexity to the hydride precipitation mechanism. In this study, reactor-grade Zirconium cladding was charged with hydrogen and hydride reorientation -treated specimens were fabricated. Microstructural characterization of hydrides was conducted via following three methods in terms of interface and stored energy. And this study aimed to compare these characteristics between circumferential and radial hydrides. Using Electron Back Scattered Diffraction (EBSD), the interface was investigated assuming that interface lies parallel to the axial axis of the tube. These were further validated with Transmission Electron Microscope (TEM). In addition, Differential Scanning Calorimetry (DSC) analysis was conducted to calculate the stored energy. This investigation is expected to establish fundamental understanding of how hydrides precipitate in Zirconium cladding with different orientations. And it will also increase the predictability of radial hydride formation and help understanding the mechanical behavior of Zirconium cladding with radial hydrides.
Mucoepidermoid carcinoma (MEC) is the most prevalent malignant tumor originating from the salivary gland. The gradation of MEC is determined histologically based on cellular composition, with high-grade MEC presenting with distinct characteristics and clinical implications. A 56-year-old male presented with a 3-month history of right facial swelling and a recent onset of pain. A subsequent biopsy confirmed a malignant epithelial tumor, with further imaging assisting in determining the surgical approach. Comprehensive surgery, involving the removal of the right submandibular gland and reconstructive procedures, was undertaken. Histopathological evaluation post-surgery confirmed a high-grade MEC. The differentiation between inflammatory conditions and neoplastic lesions in the orofacial region can be challenging. The gradation of MEC is important in guiding therapeutic decisions. Among various classification systems, the Brandwein system offers detailed histopathological criteria that correlate reliably with clinical features. High-grade MECs, although less frequent, are aggressive and have a lower 5-year survival rate. Accurate histopathological diagnosis is crucial in devising an effective treatment plan. The presented case underlines the importance of a meticulous yet periodic follow-up, considering the aggressive nature of high-grade MECs.
Carbon fibers (CFs) are considered promising composite materials for various applications. However, the high cost of CFs (as much as $26 per kg) limits their practical use in the automobile and energy industries. In this study, we developed a continuous stabilization process for manufacturing low-cost CFs. We employed a textile-grade polyacrylonitrile (PAN) fiber as a low-cost precursor and UV irradiation technique to shorten the thermal stabilization time. We confirmed that UV irradiation on the textile-grade PAN fibers could lower the initial thermal stabilization temperature and also lead to a higher reaction. These resulted in a shorter overall stabilization time and enhancement of the tensile properties of textilegrade PAN-based CFs. Our study found that only 70 min of stabilization time with UV irradiation was required to prepare textile-grade PAN-based low-cost CFs with a tensile strength of 2.37 ± 0.22GPa and tensile modulus of 249 ± 5 GPa.
In this study, surface roughness and interfacial defect characteristics were analyzed after forming a high-k oxide film on the surface of a prime wafer and a test wafer, to study the possibility of improving the quality of the test wafer. As a result of checking the roughness, the deviation in the test after raising the oxide film was 0.1 nm, which was twice as large as that of the Prime. As a result of current-voltage analysis, Prime after PMA was 1.07 × 10 A/cm2 and Test was 5.61 × 10 A/cm2, which was about 5 times lower than Prime. As a result of analyzing the defects inside the oxide film using the capacitancevoltage characteristic, before PMA Prime showed a higher electrical defect of 0.85 × 1012 cm2 in slow state density and 0.41 × 1013 cm2 in fixed oxide charge. However, after PMA, it was confirmed that Prime had a lower defect of 4.79 × 1011 cm2 in slow state density and 1.33 × 1012 cm2 in fixed oxide charge. The above results confirm the difference in surface roughness and defects between the Test and Prime wafer.
Lesson reconstruction is a way of enhancing student competency, and has been receiving much attention. Research was conducted based on lesson reconstruction by applying content and language integrated learning: CLIL. However, drawbacks such as the EFL educational environment and the notional-functional syllabi in much of the English curriculum made teachers teach the 4 skills separately (i.e. listening, speaking, reading, and writing), even though integration of 4 the skills is very much required. Although many researchers have analyzed CLIL so far, little research has suggested the specific methods of reconstructing, designing and implementing lessons in a primary Korean EFL education setting. In this study, the research reviewed the theoretical frameworks of the literature and suggested three potential methods for improvement: 1) designing lessons based on lesson reconstruction, 2), implementing the 4Cs Framework while planning CLIL lessons and, 3) choosing appropriate language based on ‘The Language Triptych’. For implementation, this research suggested that CLIL lesson integrated with other subjects or topics improves students’ reading abilities. This research goes beyond previous theoretical concepts; it suggested the ways of designing and implementing lesson construction based on CLIL lessons. The research also suggests that further research needs to fully consider its pedagogical application and explores how to practice CLIL.
PURPOSES : In the case of a turning maneuver at an at-grade intersection or changing the driving path, the trajectory of a vehicle with a long body, such as a large bus or an articulated bus, should be analyzed from the perspective of road design. In this study, an articulated bus was selected to analyze the off-tracking, swept path width, and lane encroach hment for vehicle turning.
METHODS : In this study, four scenarios were developed for right- and U-turn situations. For the right-turn situation, cases were divided into radii of 15 m (Scenario 1) and 40 m (Scenario 2). For the U-turn situation, the cases were analyzed based on a U-turn after stopping at the stop line (Scenario 3) and without stopping at the stop line for the U-turn (Scenario 4). Each scenario was examined at 5° (Right-turn) and 10° (U-turn) angles to analyze the off-tracking, swept path width, and lane encroachment. In addition, four Global Positioning System (GPS) antennas were installed on top of the articulated bus to obtain the driving trajectory of the vehicle. GPS locational reference points were marked on the testing ground to improve positioning accuracy.
RESULTS : As a result of the right-turn analysis at an intersection radius of 15 m (Scenario 1), the average off-tracking per angle was 1.04 m, the average swept path width was 3.89 m, and the lane encroachments occurred at an angle of 65° to 70°. For the right-turn analysis at an intersection radius of 40 m (Scenario 2), the average off-tracking per angle was 3.71 m, and the average swept path width was 3.31 m. Unlike the results for the 15-m radius, no lane encroachment was found. Furthermore, the averages of the off-tracking in the at-grade intersection U-turn situation were 2.65 m (Scenario 3) and 2.54 m (Scenario 4), and the average swept path width was 6.15 m.
CONCLUSIONS : The required driving width when an articulated bus performs a turning maneuver at an at-grade intersection was analyzed, revealing the implications that must be considered for busway design.
The present study was conducted to examine the effect of soybean silage as a crude protein supplement for corn silage in the diet of Hanwoo steers. The first experiment was conducted to evaluate the effect of replacing corn silage with soybean silage at different levels on rumen fermentation characteristics in vitro. Commercially-purchased corn silage was replaced with 0, 4, 8, or 12% of soybean silage. Half gram of the substrate was added to 50 mL of buffer and rumen fluid from Hanwoo cows, and then incubated at 39°C for 0, 3, 6, 12, 24, and 48 h. At 24 h, the pH of the control (corn silage only) was lower (p<0.05) than that of soybeansupplemented silages, and the pH numerically increased along with increasing proportions of soybean silage. Other rumen parameters, including gas production, ammonia nitrogen, and total volatile fatty acids, were variable. However, they tended to increase with increasing proportions of soybean silage. In the second experiment, 60 Hanwoo steers were allocated to one of three dietary treatments, namely, CON (concentrate with Italian ryegrass), CS (concentrate with corn silage), CS4% (concentrate with corn silage and 4% of soybean silage). Animals were offered experimental diets for 110 days during the growing period and then finished with typified beef diets that were commercially available to evaluate the effect of soybean silage on animal performance and meat quality. With the soybean silage, the weight gain and feed efficiency of the animal were more significant than those of the other treatments during the growing period (p<0.05). However, the dietary treatments had little effect on meat quality except for meat color. In conclusion, corn silage mixed with soybean silage even at a lower level provided a greater ruminal environment and animal performances, particularly with increased carcass weight and feed efficiency during growing period.
본 연구에서는 유리섬유보강근(GFRP rebar)를 적용한 SB6 등급 콘크리트 방호벽의 비선형 동적 해석을 수행하였다. ACI 설계기준에 근거한 새로운 방호벽 구조에 대하여 소형차와 트럭의 충돌에 대한 유한요소 모델링을 수행하였다. 트럭 충돌 에 대하여 제안한 모델은 기존의 철근을 적용한 모델과 비교하였을 때 구조적으로 만족할 만한 성능을 보였다. 또한, 소형차 충 돌 해석으로부터 산출한 탑승자 보호지수는 한계기준 범위 안에서 만족하였다. 이러한 결과로부터, 제안한 방호벽 구조는 기존 철근을 적용한 방호벽을 대체하여 실용적으로 적용이 가능할 것으로 기대된다.
Bentonite is considered as buffer of engineered barrier for retardation of radionuclide migration. Bentonite has low permeability, high swelling and high sorption capacity for radioactive nuclides. Properties have been widely investigated under various geochemical conditions simulating deep geological environments. The chemical stability of bentonite is an important factor in evaluating the long-term stability of the bentonite buffer. However, the presence of impurities in bentonite clays can reduce the retention capacity for retardation of radionuclide migration value of bentonite. Therefore, the bentonite purification is necessary. In the present study, grade improvement of montmorillonite was conducted using ultrasonic and froth flotation methods. As a result of confirming the grade of montmorillonite according to the optimal ultrasonic intensity for ultrasonic irradiation is 1.0 kHz of bentonite in Gyeongju (KJ-II) increased from 60% to 78%. In case of froth flotation method using PSS (0.1 mM) as a reagent, the grade of montmorillonite increased up to 90%.