검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 83

        2.
        2023.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study investigated the noise reduction effect according to the structure of the sound-absorption and insulating materials in order to maximize the noise reduction effect in various noise environments. For this purpose, the transmission loss according to the change in hole size of the performated plate in sound-absorption and insulating board was predicted using an CAE model. The sound-absorption and insulating board was modeled and the computation of the transmission loss was performed after applying the physical properties and boundary conditions. The pure sounds of 32Hz to 4,000Hz were generated, and the analysis was performed by changing the diameter and pitch of the perforated plate. It was confirmed that the influence of the diameter and pitch of the perforated plate is closely related to the structure that make up the sound-absorption and insulating material. In order to effectively reduce the variously changing noises, it is believed that a method of improving transmission loss for each frequency band of interest is needed by changing the structure of the sound-absorption and insulating material so that the diameter and pitch of the perforated plate can be changed.
        4,000원
        4.
        2023.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Hydrogen is considered as one of the most promising future energy carriers due to its noteworthy advantages of renewable and high calorific value. The long-term storage of liquid hydrogen with low heat leakage is essential for future deep space exploration. Because of low critical temperature and volatility, liquid hydrogen tank poses severe requirements to multi-layer insulation (MLI). In order to reduce heat leak into tank, vapor cooled shield (VCS) was set up to cool MLI by retrieving the heat of discharged cryogenic gas hydrogen. This paper presents an parametric study on insulation system in liquid hydrogen storage vessel with MLI and VCS. Thermal model was developed, and heat transfer analysis by varying VCS position was conducted. Temperature and heat flux distributions along time passing were derived, and effect of VCS position on insulation performance was investigated.
        4,000원
        5.
        2023.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Inorganic-organic composites find extensive application in various fields, including electronic devices and light-emitting diodes. Notably, encapsulation technologies are employed to shield electronic devices (such as printed circuit boards and batteries) from stress and moisture exposure while maintaining electrical insulation. Polymer composites can be used as encapsulation materials because of their controllable mechanical and electrical properties. In this study, we propose a polymer composite that provides good electrical insulation and enhanced mechanical properties. This is achieved by using aluminum borate nanowhiskers (ABOw), which are fabricated using a facile synthesis method. The ABOw fillers are created via a hydrothermal method using aluminum chloride and boric acid. We confirm that the synthesis occurs in various morphologies based on the molar ratio. Specifically, nanowhiskers are synthesized at a molar ratio of 1:3 and used as fillers in the composite. The fabricated ABOw/epoxy composites exhibit a 48.5% enhancement in mechanical properties, similar to those of pure epoxy, while maintaining good electrical insulation.
        4,000원
        6.
        2023.07 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구에서는 육계사에 차열 페인트와 히트펌프의 적용에 따른 내부 온도 변화를 분석 하였다. 이를 위하여 환기율, 환기 방법, 시간별 환기 변화에 따른 실험 조건을 설정하였으며 육 계사 외부 및 내부 기온을 측정하였다. 그 결과, 차열 페인트를 도포한 육계사에서는 최대 1-2°C 실내 기온 상승을 억제하 는 효과가 나타났으며 히트펌프를 가동한 육계사에서는 외기 온도의 영향을 제일 적게 받는 환기율 0%일 때 내부 기온 감소 가 제일 크게 나타났다. 계사 내부의 온도가 외기 온도보다 높 을 경우에는 환기율을 높게 설정하여 환기팬을 이용한 냉방이 더욱 효과적이나 계사 내부 온도가 외기 온도와 유사하거나 낮을 경우에는 히트펌프를 이용하는 것이 가장 효과적일 것으 로 판단된다. 히트펌프 가동 시 외기 온도의 영향이 적은 환기 율을 0%로 설정하였을 때 내부 기온이 가장 큰 폭으로 감소하 였으나 실제 육계사에서는 분진, 이물질, 암모니아 등을 고려 하여 최소환기율 정도로 환기율을 설정한 후 히트펌프를 가동 하는 것이 가장 효율적일 것으로 판단된다. 본 연구는 실험 기 간이 짧아 데이터가 많지 않으며 실제 육계가 사육되고 있는 환경에서 실험을 진행한 것이 아니라는 한계가 있다. 향후 후 속 연구로 실제 닭이 사육되고 있는 환경에서의 히트펌프 효 과 분석과 히트펌프의 전력사용량, 냉방부하, 환기팬 가동시 간 등 다양한 환경인자를 포함한 연구가 진행되어야 할 것으 로 판단된다.
        4,000원
        8.
        2023.01 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The external weather conditions including temperature and wind speed in the Saemangeum reclaimed land is different from that of the inland, affecting the internal environment of the greenhouse. Therefore, it is important to select an appropriate covering material considering the insulation effect according to the type and characteristics of the covering material considering the weather condition in the Saemangeum reclaimed land. A hexahedral insulation chamber was designed to evaluate the insulation efficiency of each glass-clad material in the outside weather condition in reclaimed land. In order to evaluate the insulation effect of each covering material, a radiator was installed and real-time power consumption was monitored. 16-mm PC (polycarbonate), 16-mm PMMA (polymethyl methacrylate), 4-mm greenhouse glass, and 16-mm double-layered glass were used as the covering materials of the chamber. In order to understand the effect of the external wind directions, the windward and downwind insulation properties were evaluated. As a result of comparing the thermal insulation effect of each greenhouse cover material to single-layer glass, the thermal insulation effect of double-layer glass was 16.9% higher, while PMMA and PC were 62.5% and 131.2% higher respectively. On average the wind speed on the windward side was 53.1% higher than that on the lee-wind side, and the temperature difference between the inside and outside of the chamber at the wind ward side was found to be 52.0% larger than that on the lee ward side. During the experiment period, the overall heating operation time for PC was 39.2% lower compared to other insulation materials. Showing highest energy efficiency, and compared to PC, single-layer glass power consumption was 37.4% higher.
        4,000원
        9.
        2022.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Thermal protection systems (TPS) are a group of materials that are indispensable for protecting spacecraft from the aerodynamic heating occurring during entry into an atmosphere. Among candidate materials for TPS, ceramic insulation materials are usually considered for reusable TPS. In this study, ceramic insulation materials, such as alumina enhanced thermal barrier (AETB), are fabricated via typical ceramic processing from ceramic fiber and additives. Mixtures of silica and alumina fibers are used as raw materials, with the addition of B4C to bind fibers together. Reaction-cured glass is also added on top of AETB to induce water-proof functionality or high emissivity. Some issues, such as the elimination of clumps in the AETB, and processing difficulties in the production of reusable surface insulation are reported as well.
        4,000원
        10.
        2022.05 구독 인증기관·개인회원 무료
        In nuclear power plants, insulation is used to protect equipment and block heat. Insulation materials include asbestos, glass fiber, calcium silicate, etc. Various types and materials are used. This study aims to ensure volume reduction and disposal safety by applying plasma torch melting technology to insulation generated at operating and dismantling nuclear power plants. After the evaluation of characteristics by securing thermal insulation materials or similar materials in use at the operational and dismantling nuclear power plant. It is planned to perform pyrolysis and melting tests using the MW plasma torch melting facility owned by KHNP CRI Before the plasma test, check the thermal decomposition and melting characteristics (fluidity, etc.) of the insulation in a 1,600°C high-temperature furnace. The insulation is stored in a 200 L drum and injected into a plasma facility, and the drum and the insulation are to be pyrolyzed and melted by the high temperature inside the plasma torch melting furnace. Through this test, thermal decomposition and melting of the insulation, solidification/ stabilization method, maximum throughput, and exhaust characteristics are confirmed at a high temperature (1,600°C) of the plasma torch. Through this study, it is expected that the stable treatment and disposal of insulation generated from operating and dismantling nuclear power plants will be possible.
        11.
        2022.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Preparation of advanced functional materials from agricultural waste by eco-friendly processing route is inevitable for sustainable development. This work demonstrates the development of carbon/silica (C/SiO2) and carbon/silicon carbide (C/ SiC) composite foam monoliths of low thermal conductivity, high EMI shielding performance and reasonable compressive strength from rice husk. The C/SiO2 and C/SiC composite foams are obtained by carbonization and subsequent carbothermal reduction, respectively, of rice husk–sucrose composites consolidated by filter-pressing rice husk powder dispersed in sucrose solutions of various concentrations (300–600 g L− 1). The amorphous nature of silica in C/SiO2 and the presence of β-SiC in C/SiC are evidenced from XRD and TEM analysis. The compressive strength and thermal conductivity are depending on the foam density which is tailored by sucrose solution concentration. The compressive strength in the ranges of 0.32–1.67 and 0.19–1.19 MPa are observed for C/SiO2 and C/SiC foams, respectively, with density in the ranges of 0.26–0.37 and 0.18–0.29 g cm− 3. The C/SiO2 and C/SiC exhibited thermal conductivity in the ranges of 0.150–0.205 W m− 1 K− 1 and 0.165–0.431 W m− 1 K− 1, respectively. The C/SiO2 and C/SiC composite foams show absorption dominated EMI shielding effectiveness in the ranges of 18–38.5 dB and 20–43.7 dB, respectively. The inherent pore channels and corrugated surface structure in rice husk, electrically conducting carbon and dielectric SiO2 and SiC contribute to the total EMI shielding.
        4,500원
        12.
        2021.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, the types of thermal breakers applied to structures to prevent thermal bridges were identified. Condensation prevention performance was evaluated for apartment houses with standard floor structures to which a thermal breaker was applied. In addition, the effect of thermal cross-blocking was compared by calculating the total heat and equivalent U-value through the wall. (1) As a result of the evaluation of anti-condensation performance, when “가” grade insulation was applied, the surface temperature increased by about 1K due to the application of the thermal breaker. The TDR value increased by about 0.06 to 0.07. When "나" grade insulation was applied, the minimum surface temperature increased by about 1K, and the TDR value increased by about 0.05~0.06. (2) As a result of the evaluation of total heat and U-equivalent, it was possible to reduce the total heat by 38.5~44.9% and U-equivalent by 38.5~45.0% for the "가" grade insulation to which the thermal breaker was applied. In addition, the "나" grade insulation to which the thermal breaker was applied can reduce total heat by 38.9 to 43.6%, and reduce the Uequivalent by 38.9 to 43.7%.
        4,000원
        13.
        2021.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, an accelerated weathering test was performed to examine the variation of thermal insulation performance according to the service life. A widely used class 1 thermal screen (matt georgette + polyethylene (PE) foam + chemical cotton + felt + matt georgette) was selected as the target thermal screen. The ultraviolet irradiation that reached the target thermal screen specimen (60 x 60cm) was 5mW/cm2. Thus, the ultraviolet irradiance was set to 5mW/cm2, and the exposure periods of accelerated weathering conditions on the specimens were set to 0, 282, 847, and 1412h. The radiation exposure periods of the weathering conditions for 0, 282, 847, and 1412h indicate the amount of ultraviolet accumulation for 0, 1, 3, and 5years, respectively. In the accelerated weathering test, the target specimens that completed each exposure phase were subjected to the hotbox test to analyze their thermal insulation performances. Consequently, the thermal insulation performance of the multi-layer thermal screen was estimated to degrade rapidly after approximately two years. In the accelerated weathering condition, a quadratic function model was used to calculate the expected service life, since it adequately described the variation in thermal insulation of the thermal screen according to time. The results showed that when the thermal insulation performance degraded by 5, 10, 20, and 30%, the expected service lives were 2.5, 3.3, 4.5, and 5.5years, respectively.
        4,000원
        14.
        2021.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        노지재배 ‘부지화’ 나무의 동해를 경감시키기 위해 피복재로 타이벡, 위드스톱, 35% 차광망을 사용하여 피복재 내, 외부 온도와 상대습도 변화를 평가하였다. 한파 시 피복에 따른 보온 정도와 잎의 LT50을 조사하였다. 타이벡은 1.5m에서 피복 재 내부와 외부의 온도 차이는 낮았고 0.4m에서는 높았다. 상대습도는 주야간 차이가 컸으며 오전 6-8시에 높았다. -2℃일 때 24시간 타이벡 피복은 수관 1.5m에서 무처리보다 적산온도가 3.4℃ 높았다. 잎의 LT50은 타이벡 1.51℃, 위드스톱 1.33℃, 35% 차광망은 1.61℃로 무처리보다 낮았다. 타이벡의 수관 내 보온효과와 상대습도를 고려할 때 환기를 위한 미세한 천공 후 ‘부지화’ 나무에 피복시 동해 발생을 줄일 수 있을 것으로 보인다.
        4,000원
        15.
        2021.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES : In this study, we aimed to develop an absorption and insulation soundproof board with excellent noise reduction ability using waste tire powder. METHODS : An optimum mix ratio of sound absorption material and sound insulation material was derived through a sound absorption test and a compressive strength test; a combustion test was performed to confirm whether the combustibility evaluation criteria were satisfied. Additionally, to derive a shape with excellent noise reduction ability, noise prediction simulation was performed. RESULTS : Through the sound absorption test, compressive strength test, and combustion test, an optimum mix ratio of sound absorption material and sound insulation material as well as a shape with excellent noise reduction ability was derived through noise prediction simulation. CONCLUSIONS : An absorption and insulation soundproof board was applied with sound absorption material and sound insulation material developed using waste tire powder. The recycling rate improved; thus, excellent noise reduction ability can be expected by developing not only materials but also shapes.
        4,000원
        16.
        2020.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구는 최근 신소재 단열재로 주목받고 있는 실리카 에어로겔을 이용하여 현재 사용되고 있는 다겹보온커튼의 단점을 보완하고 보온성을 유지 및 향상시킬 수 있는 새로운 조합의 다겹보온커튼을 제작 하여 현장에 설치함으로써 보온성과 경제성을 분석하고자 한다. 실험에 사용된 다겹보온커튼은 실리카 에어로겔이 함유된 부직포를 사용하여 2가지의 조합으로 제작하였으며 시중에 판매, 사용되고 있는 관행 다겹보온 커튼과의 차이에 따른 온습도변화와 연료소비량을 측정하여 비교분석하였다. 실험결과 단동온실과 연동온실에서 다겹보온커튼 차이에 따른 온습도변화는 미세하게 나타났으나, 거의 비슷한 온습도 값을 유지하였다. 이는 실리카 에어로겔을 이용한 다겹보 온커튼이 관행 다겹보온커튼에 비해 온습도 제어 측면에서 문제가 없음을 나타냈다. 난방에너지 비교분석 결과, 실리카 에어로겔을 이용한 다겹보온커튼이 관행 다겹보온커튼에 비해 연료소비량은 단동온실에서 약 15%, 연동온실에서 약 20% 의 연료소비량을 절감한 것으로 나타나 온실의 규모와 사용기 간이 증가함에 따라 난방에너지는 절감될 것으로 판단된다. 실리카 에어로겔 이용 다겹보온커튼이 관행 다겹보온커튼에 비해 통기성과 보온성이 증가되는 것이 확인되었다. 그러나, 연동온실에서 사용된 다겹보온커튼은 관행 다겹보온커튼에 비해 무게가 증가하고 뻣뻣하여 시공성과 작동성이 떨어지는 것을 확인할 수 있었다. 이에 단동온실에서 사용된 다겹보온 커튼에서는 개선사항을 적용하였다. 내부단열재의 교체를 통해 두께를 감소시키고 뻣뻣함을 개선함으로써 농가가 사용하 기에 충분한 가능성이 있다는 것을 확인하였다.
        4,000원
        19.
        2019.07 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, we conducted the hot box tests to compare the changes in thermal insulation for the four types of multi-layer thermal screens by the used period after collecting them from the greenhouses in the field when they were replaced at the end of their usage. The main materials for these four types of multi-layer thermal screens were matt georgette, non-woven fabrics, polyethylene (PE) foam, chemical cotton, etc. These materials were differently combined for each multi-layer thermal screen. We built specimens (70×70 cm) for each of these multi-layer thermal screens and measured the temperature descending rate, heat transmission coefficient, and thermal resistance for each specimen through the hot box tests. With regard to the material combinations of multi-layer thermal screens, thermal insulation can be increased by applying a multi-layered PE foam. However, it is considered that the multilayered PE foam significantly less contributes to heat-retaining than chemical wool that forms an air-insulating layer inside multi-layer thermal screens. For the suitable heat-retaining performance of multi-layer thermal screens, basically, materials with the function of forming an air-insulating layer such as chemical cotton should be contained in multi-layer thermal screens. The temperature descending rate, heat transmission coefficient, and thermal resistance of multi-layer thermal screens were appropriately measured through the hot box tests designed in this study. However, in this study, we took into consideration only the four kinds of multi-layer thermal screens due to difficulties in collecting used multi-layer thermal screens. This is the results obtained with relatively few examples and it is the limit of this study. In the future, more cases should be investigated and supplemented through related research.
        4,000원
        20.
        2019.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this paper, the boom of a 30m class refracted insulation with outrigger on aerial elevating work platform is modeled as 3D CAD program of CATIA. The static and dynamic analyses are performed by using ANSYS and ADAMS programs, respectively. The refracted insulation boom uses acetal and the composite boom for insulation. And the composite insulation boom is modeled by using ACP (Ansys Composite Prepost) of ANSYS program. In order to analyze the durability of refracted insulation boom, the static analysis is performed and each analyzed part is stored as =MNF-type flexible body model. The dynamic analysis is performed with ADAMS by using the flexible model. As the result, these analyzes clarify the structural stability and dynamic durability (hot spot) of the refracted insulation boom.
        4,000원
        1 2 3 4 5