Korea has many test beds where various mobility services are provided by automated vehicles. The test beds are operated in their operational design domain (ODD). However, disengagement frequently occurs, even in the ODDs of automated vehicles. In particular, human drivers have to take control of the automated vehicles at SAE Level 3 whenever the vehicles cannot drive by themselves because of an emergency or unknown factors. This study analyzed the driving safety of right turning at signalized intersections where automated vehicles face selfdriving issues because of potential conflicts with other vehicles, crossing pedestrians, and geometric factors. To conduct this analysis, we categorized right-turning intersections into two types with right-turning lanes and channelization islands and divided them into three sections, with a total of six sections. Subsequently, the six sections were compared with each other by disengagements of the automated vehicles as the key index to investigate their self-driving safety. Their significant differences indicate that ODD-related variables must be considered when designing and updating target test beds for automated vehicles.
국내 도심지에 적용하고 있는 중앙버스정류장의 포장은 주로 아스팔트 포장으로 시공되어 있으나 중차량인 버스의 하 중으로 인해 포장 파손 사례가 증가하여 시민들의 안전에 악영향을 미치고 있으며 유지보수 비용이 매년 증가하고 있다. 서울시에서는 이러한 문제를 해결하기 위해 국내 최초로 중앙버스정류장 신설 구간에 현장타설 방식으로 연속철근 콘크 리트 포장(CRCP)을 시공하였다. 본 연구에서는 이러한 구간의 연속철근 콘크리트 포장에 대한 이동차량 하중에 의한 동 적 거동 특성을 분석하고자 포장 슬래브에 콘크리트 변형률계를 설치하고 덤프트럭을 통과시키며 동적 하중 재하 실험 을 수행하였다. 실험에서는 이동차량의 속도를 다양하게 변화시켜 차량 속도에 따른 포장 슬래브의 동적 거동을 비교 분 석하였으며 이동차량이 CRCP의 여러 위치에서 정지하도록 하여 정지 위치에 따른 거동도 분석하였다. 실험 결과, 차량 이 CRCP를 통행할 경우 차량 속도 및 정지 위치에 따른 포장 슬래브의 동적 변형률은 매우 유사한 것으로 분석되었다.
도로 위 차량의 차로변경은 주변 차량의 움직임에 민감하게 반응해야 하며, 적절한 속도와 타이밍으로 수행하지 못할 경우 교통 흐름을 방해하고 부정적인 영향을 초래할 수 있다. 자율주행차량(Autonomous Vehicle, AV)은 이러한 문제를 해결하기 위해 주변 상황을 정확히 판단하고 인지하여 차로변경을 수행한다. 이때, 안전 관리 전략의 일환으로 최적화된 차로변경 주행 궤적을 제공함으로써 안전하고 효율적인 차로변경을 실현하는 것이 중요하다. 본 연구는 이러한 배경에서 주변 차량과 EGO 차량의 예측 주행 궤적에 기반한 확률론적 개념인 risk field를 계산하고, 이를 활용하여 차량의 종방 향 및 횡방향 안전 궤적을 제시하였다. 이를 위해 고속도로 드론 데이터를 활용하여 차량 간 상호작용 상황을 분석하고, 차로변경 시나리오 데이터를 분류하였다. 연구에서는 주행 속도와 차량의 경위도 등 1.1초 동안의 연속된 주행 데이터를 입력으로 사용하였으며, 다층 인코더-디코더 장단기 메모리 네트워크(EDLN) 모델을 통해 미래 6초 후 차량의 위치를 예 측하였다. 이후 장 이론(field theory)을 기반으로 한 risk field 모형을 통해 도로 위 각 지점의 위험도를 정량화하였다. 또한, 차량의 거동 제약, 주행 편의성, 그리고 안전성 제약 조건을 반영하여 안전 궤적을 생성하였다. 마지막으로, 생성된 궤적이 교통류 안전성에 미치는 영향을 평가하기 위해 예측된 주행 궤적(predicted trajectory)과 실제 주행 궤적(ground truth)을 비교 분석하였다. 평가지표는 대리 안전 지표(surrogate safety measure, SSM) 중 TTC(Time to Collision)와 PET(Post Encroachment Time)를 활용하였다. 본 연구는 제안된 안전성 정량화 및 궤적 생성 방법이 기존 방법론과 비 교하여 우수한 성능을 보임을 입증하였으며, 향후 자율주행차량 혼재 교통류 및 완전 자율주행 교통류에서 높은 효율성 과 안전성을 확보하는 데 기여할 것으로 기대된다.
자율주행 차량이 상용화됨에 따라 연구에 사용할 수 있는 자율주행 차량의 주행궤적 자료를 제공하고 연구하는 기관이 증가하고 있다. 캘리포니아 자동차관리국은 사고 당시 차량의 거동과 주변 환경을 기록한 자율주행 차량 사고 보고서를 제공한다. Waymo는 라이다, 카메라 등을 통해 수집한 자율주행 차량의 실주행 자료를 제공한다. 본 연구에서는 캘리포 니아 자동차관리국에서 제공하는 자율주행 차량 사고 보고서와 Google Street Map을 이용하여 사고 당시의 도로유형과 도로환경요소 및 사고 당시 상황을 파악하고, 베이지안 네트워크(BN)을 통해 자율주행 차량 사고 영향요인을 파악하였 다. 랜덤 포레스트를 통해 앞에서 파악한 자율주행 차량 사고 영향요인들의 변수 중요도를 추출하고 이를 기반으로 자율 주행 차량 주행 시나리오를 도출하였다. 도출한 자율주행 차량 주행 시나리오와 유사한 상황을 보이는 Waymo Open Dataset의 자율주행 차량 실제 주행궤적을 매칭하여 자율주행 차량 주행 행태 기반 사고 위험도 평가 지표를 도출하였 다. 본 연구의 결과는 앞으로 도로환경요소 및 자율주행 차량 주행궤적에 따른 자율주행 차량 주행 안전성 연구의 기반 이 될 것으로 기대된다.
In this study, fire extinguisher system to which form fire extinguisher agents were adopted was applied to the combat vehicle crew room to apply fire extinguishing performance and acid gas safety that meet the national defense standards. As a result of evaluation and verification, the following conclusions were drawn. For standard fire sizes in the combat vehicle crew's standard model, we ignited using a mixture of Novec 1230 and Halon 1301 form extinguisher agent and released form extinguisher agent after 30 seconds to determine the fire extinguishing time. The amount of acid gas generated met the criteria in all cases. When the fire size was increased to 0.12m2 and a 2.0mm nozzle was used, all of the extinguishing time, the amount of acid gas generated, and the concentration of Novec 1230 met the criteria. Despite the more difficult conditions to extinguish the fire by making the fire larger, it was possible to confirm the extinguishing performance of the Novec 1230 form extinguisher agent and its safety against acid gas.
This study presents the development of an algorithm that detects potential front bumper collisions caused by road inclinations and provides early warnings to drivers. The system uses a Time-of-Flight (ToF) infrared distance sensor and an obstacle detection sensor, both implemented on an Arduino-based platform. By continuously monitoring the road ahead, the algorithm measures and analyzes the slope angle to identify potential hazards. This solution offers a cost-effective and efficient alternative to traditional warning systems, notifying drivers in advance of dangerous road conditions and helping to prevent vehicle damage caused by sudden changes in road gradient.
Along with the increase in the number of vehicles in circulation, the indoor air quality in automobiles is attracting attention as another possible health concern. However compared to data regarding indoor air quality in other spaces, there are insufficient data on indoor air quality in automobiles. In addition, there is no standard for the evaluation method. In this study, the change in the concentration of particulate matter in the vehicle while driving under real road conditions was analyzed in order to use it as basic data for a method to evaluate vehicle indoor air quality. Through the selection of measurement target materials and test vehicles and the preparation of test methodologies, evaluation was performed on vehicle, route, and HVAC modes. The concentration of particulate matter in the vehicle was the lowest in the RC (In-vehicle recirculation) condition, and it was confirmed that it decreased with time. The highest average concentration was confirmed in the OA (Outside air ventilation) condition, and the concentration change according to the changing HVAC mode was observed in the Auto condition. The concentration of pollutants inside the vehicle showed a significant correlation with factors such as season, external concentration, and HVAC conditions, along with a weak correlation to powertrain type. The results of this study can be used as basic data for developing methods for evaluating vehicle interior air quality in future work.
Onboard truck scales can accurately measure payload under static conditions. However, their performance is limited in accounting for dynamic environments encountered during driving, leading to inaccuracies in load estimation under real-world conditions. This study employs TruckCaliber, a dynamic state measurement system, to estimate real-time vehicle loads. Fusion sensor modules were installed on leaf spring suspensions and vehicle frames to collect tilt and IMU data. The system was implemented on a commercial truck, and driving tests were conducted with varying payloads. The analysis focused on curved sections under different dynamic conditions.
The hydrogen valve used in this study is intended to be applied to a automobile, and since there is a limit to the length of the stem, it is necessary to review the optimized stem, and for this, it is required to investigate the heat transfer characteristics of the hydrogen shut-off valve. For this, the temperature of the entire shut-off valve and especially the plunger and O-ring, which are key components in the solenoid valve driving the hydrogen shut-off valve, was calculated using the ANSYS-CFX flow analysis program. From the analysis results, the length of the stem capable of maintaining the design temperature of -40℃ or higher should be at least 139 mm, and it is judged that it should be 140 mm or more considering safety. When determining the stem length of the hydrogen blocking valve for automobiles, constraints on installation in automobiles should be considered.
This paper defines structural and dynamic analysis of a crane used for electric passenger vehicle fire scenarios. The crane model used in the study has a working radius of 9 meters, and under extreme conditions measured with real-world usage in mind, the load at the boom tip is 24.5kN. The boom is assumed to be made of ATOS80, and the pads are assumed to be made of Monomer Casting Nylon. Structural analysis was conducted based on the crane's materials and configuration, and dynamic analysis was performed by dividing the grab method into gripper and hinge types. In the structural analysis, the maximum stress increased as the telescopic boom faced upwards. In the dynamic analysis, the gripper type facing downward showed more stable stress. For the model with an added badge, the structural analysis showed an increase in maximum stress, but the value was negligible, and the maximum stress of the telescopic boom decreased in the dynamic analysis. Based on the analysis results, the suitable materials for the crane are ATOS80 for the lower articulated boom and the telescopic boom, and DOMEX1300 for the upper articulated boom. The gripper type grab method is more stable than the hinge type.
PURPOSES : This study aimed to derive the factors that contribute to crash severity in mixed traffic situations and suggest policy implications for enhancing traffic safety related to these contributing factors. METHODS : California autonomous vehicle (AV) accident reports and Google Maps based on accident location were used to identify potential accident severity-contributing factors. A decision tree analysis was adopted to derive the crash severity analyses. The 24 candidate variables that affected crash severity were used as the decision tree input variables, with the output being the crash severity categorized as high, medium, and low. RESULTS : The crash severity contributing factor results showed that the number of lanes, speed limit, bus stop, AV traveling straight, AV turning left, rightmost dedicated lane, and nighttime conditions are variables that affect crash severity. In particular, the speed limit was found to be a factor that caused serious crashes, suggesting that the AV driving speed is closely related to crash severity. Therefore, a speed management strategy for mixed traffic situations is proposed to decrease crash severity and enhance traffic safety. CONCLUSIONS : This paper presents policy implications for reducing accidents caused by autonomous and manual vehicle interactions in terms of engineering, education, enforcement, and governance. The findings of this study are expected to serve as a basis for preparing preventive measures against AV-related accidents.
PURPOSES : For autonomous vehicles, abnormal situations, such as sudden changes in driving speed and sudden stops, may occur when they leave the operational design domain. This may adversely affect the overall traffic flow by affecting not only autonomous vehicles but also the driving environment of manual vehicles. Therefore, to minimize the traffic problems and adverse effects that may occur in mixed traffic situations involving manual and autonomous vehicles, an autonomous vehicle driving support system based on traffic operation optimization is required. The main purpose of this study was to build a big-data-classification system by specifying data classification to support the self-driving of Lv.4 autonomous vehicles and matching it with spatio-temporal data. METHODS : The research methodology is explained through a review of related literature, and a traffic management index and big-dataclassification system were built. After collecting and mapping the ITS history traffic information data of an actual Living Lab city, the data were classified using the traffic management indexing method. An AI-based model was used to automatically classify traffic management indices for real-time driving support of Lv.4 autonomous vehicles. RESULTS : By evaluating the AI-based model performance using the test data from the Living Lab city, it was confirmed that the data indexing accuracy was more than 98% for the KNN, Random Forest, LightGBM, and CatBoost algorithms, but not for Logistics Regression. The data were severely unbalanced, and it was necessary to classify very low probability nonconformities; therefore, precision is also important. All four algorithms showed similarly good performances in terms of accuracy. CONCLUSIONS : This paper presents a method for efficient data classification by developing a traffic management index to easily fuse and analyze traffic data collected from various institutions and big data collected from autonomous vehicles. Additionally, EdgeRSU is presented to support the driving of Lv.4 autonomous vehicles in mixed autonomous and manual vehicles traffic situations. Finally, a database was established by classifying data automatically indexed through AI-based models to quickly collect and use data in real-time in large quantities.
최근 자율주행 차량의 등장으로 인해 기존의 교통 시스템에 많은 변화가 생길 것으로 보이며, 운전자가 주행하던 차량과는 다른 행태로 인해 기존 비자율주행 차량들이 초래하는 고위험 상황의 요인과는 다른 새로운 요인들이 도출될 것으로 보인다. 하지만, 현 시점 국내 에서는 자율주행 차량이 실제로 주행하고 있지 않기 때문에 주행행태를 포함한 데이터 기반의 주요 요인 분석 및 도출에 한계가 있다. 따라서 현 시점에서 자율주행 차량이 혼재하는 환경에서 고위험한 상황을 정의할 수 있는 요인을 도출하기 위해서는 사례 중심의 분석이 필요하다. 따라서 본 연구에서는 기존 국내·외 자율주행차량과 관련된 다양한 논문 사례를 DB화하여 이를 정량적으로 평가할 수 있는 메타 분석(Meta-Analysis) 기법을 통해 향후 자율주행차량이 혼재하는 교통 네트워크에서 안전성을 증진하기 위한 고위험 유발의 주요 요인을 도출하고자 하였다. 본 연구에서 DB화한 논문은 자율주행 차량과 관련된 총 4가지(사고요인, 시나리오, 예측모델, 법규)에 해당 하는 분야로 분류하여 수집하였으며, 2015년부터 2024년 까지 최근 10개년에 해당 되는 사례를 수집하여 분석을 수행하고 주요 요인을 도출하였다. 본 연구의 결과는 향후 자율주행 차량 혼재 시 고위험 상황의 주요 요인들을 바탕으로 각 요인에 기반한 자율주행차량 혼재 시 고위험 상황에 대한 정의를 할 수 있으며, 이러한 고위험 요인들에 의해 도로교통의 안전성이 저해될 수 있는 요인에 대한 사전 예방을 수행할 수 있을 것으로 기대된다.
본 연구는 2017년부터 2021년까지 고속도로에서 발생한 약 9,600건의 사고를 분석하여 자율주행 긴급차량의 신속한 대응 능력을 향 상시키고자 하였다. 조사 결과, 2차 사고가 전체 사망자의 16.8%를 차지하며, 이들 중 약 74%가 선행사고와 관련이 있다는 점이 강조 된다. 이러한 통계는 긴급차량의 신속한 대처 능력이 피해를 최소화하는 데 얼마나 중요한지를 보여준다. 연구에서는 사고의 영향권을 정의하고, 이를 기반으로 긴급차량이 보다 안전하고 효율적으로 사고 현장에 접근할 수 있도록 하는 알고리즘을 개발하였다. 실제 교 통사고 데이터를 활용하여 사고 지속 시간과 다양한 변수를 고려한 기초 분석을 실시하였으며, 도로 특성, 사고 종류, 점유 차로 등 여러 요소를 반영하여 대응 기준을 설정했다. 알고리즘은 자율주행 차량이 실시간으로 주변 정보를 수집하고 신속하게 대응 방안을 마련할 수 있도록 설계되었다. 향후 연구에서는 알고리즘의 실제 도로 환경에서의 적용 가능성을 검토하고, 다양한 변수들을 포함한 추가 연구를 통해 성능을 더욱 개선할 계획이다. 이러한 연구 결과는 교통사고로 인한 피해를 줄이는 데 기여하고, 자율주행 기술을 활용하여 2차 사고의 가능성을 감소시키는 데 중요한 역할을 할 것으로 기대된다.
최근 자율주행차량 기술의 급속한 발전은 교통 시스템의 효율성을 향상시키는 동시에, 도로 인프라에 새로운 도전 과제를 제기하고 있다. 자율주행차량은 차선 유지 시스템을 통해 일정하게 차선 중앙을 주행하는 특성이 있으며, 이로 인해 특정 휠패스(Wheel Path) 구 간에 하중이 집중되는 문제가 발생한다. 특히 중차량과 자율주행차량이 빈번하게 운행되는 도로 구간에서는 이러한 하중 집중으로 인 해 도로 포장층의 소성 변형과 균열이 빠르게 진행되며, 결과적으로 도로의 내구성이 크게 저하된다. 이는 도로의 유지보수 주기를 단 축시키고, 유지 비용을 증가시키며, 도로 이용자들에게 안전상의 위험을 초래할 수 있다. 이를 해결하기 위해 다양한 도로 보강 기술이 연구되어 왔으며, 그중 섬유 보강 그리드 기술이 주목받고 있다. 본 연구에서는 탄소섬 유와 유리섬유를 결합한 하이브리드형 섬유보강 그리드를 개발하고, 이를 자율주행차량이 운행하는 도로 구간에 적용함으로써 도로의 내구성 향상과 유지보수 비용 절감을 목표로 한다. 탄소섬유는 높은 강도와 내구성을 제공하여 휠패스 부위에 집중되는 하중에 대한 저항성을 강화하고, 유리섬유는 비휠패스 구간에 경제적인 보강 효과를 제공한다. 본 연구는 자율주행차량 시대에 적합한 도로 보강 솔루션을 제시하고, 이를 실증 구간에서 평가하여 그 효과를 검증하고자 한다. 이를 통해 도로의 반사균열 저항성 및 소성변형 저항성을 개선하고, 도로 수명을 연장함으로써 자율주행차량이 증가하는 교통 환경에서도 지속 가능한 도로 관리 방안을 제시할 수 있을 것이다.
This study presents a systematic causal analysis of the fuel consumption rate reduction phenomenon observed in mortar-carrier tracked vehicles during driving tests. The investigation focused on identifying the root causes and developing effective improvement measures. Through comprehensive inspections and tests of the chassis and power pack components, along with data analysis, the study identified the damage of the engine flywheel housing gasket and the clogging of the transmission exhaust pump strainer as the main causes of the reduced fuel consumption rate. The causal relationship between the two phenomena was empirically proven using material composition analysis and statistical techniques, enhancing the reliability and validity of the diagnosis. Based on the root cause analysis results, improvements were implemented, including the replacement of the engine gasket and the cleaning of the transmission exhaust pump strainer. The effectiveness of the improvements was quantitatively verified, confirming a significant enhancement in fuel consumption rate and cruising range. By employing a systematic and scientific analysis methodology, this study provides a foundation for improving the reliability and maintenance efficiency of similar weapon systems and power transmission systems in general.
PURPOSES : This study aims to calculate the estimation of travel time saving benefits from smart expressway construction by considering the willingness to pay for automated vehicles. METHODS : In this study, data were collected from 809 individual drivers through a stated preference survey. A multinomial logit model was constructed to analyze the choice behavior between arterial roads, expressways, and smart expressways. Through this, the values of time and benefits were estimated. RESULTS : The value of time was calculated at 19,379 won per vehicle per hour for arterial roads and expressways and 23,061 won per vehicle per hour for smart expressways. Applying these values to the Jungbu Naeryuk expressway, we evaluated the demand change and benefits resulting from the improvement to the smart expressways. The results show that the traffic volume on the Jungbu Naeryuk expressway is expected to increase by 4.7% to 20.7% depending on the changes in capacity. CONCLUSIONS : The travel time saving benefits are estimated as positive, resulting from the construction of smart expressways. The benefits resulting from the construction of new smart expressways are expected to be enhanced due to the anticipation of more significant time-saving effects.
PURPOSES : This study analyzes the accident damage scale of hazardous material transportation vehicles not monitored in real time by the Hazardous Material Transportation Safety (HMTS) management center. METHODS : To simulate hazardous-material transportation vehicle accidents, a preliminary analysis of transportation vehicle registration status was conducted. Simulation analyses were conducted for hazardous substance and flammable gas transportation vehicles with a high proportion of small- and medium-sized vehicles. To perform a spill accident damage-scale simulation of hazardous-substance transportation vehicles, the fluid analysis software ANSYS Fluent was used. Additionally, to analyze explosion accidents in combustible gas transportation vehicles, the risk assessment software Phast and Aloha were utilized. RESULT : Simulation analysis of hazardous material transportation vehicles revealed varying damage scales based on vehicle capacity. Simulation analysis of spillage accidents showed that the first arrival time at the side gutter was similar for various vehicle capacities. However, the results of the cumulative pollution analysis based on vehicle capacity exhibited some differences. In addition, the simulation analysis of the explosion overpressure and radiant heat intensity of the combustible gas transportation vehicle showed that the difference in the danger radius owing to the difference in vehicle capacity was insignificant. CONCLUSIONS : The simulation analysis of hazardous-material transportation vehicles indicated that accidents involving small- and medium-sized transportation vehicles could result in substantial damage to humans and ecosystems. For safety management of these small and medium-sized hazardous material transportation vehicles, it is expected that damage can be minimized with the help of rapid accident response through real-time vehicle control operated by the existing HMTS management center.
This study aims to develop a Commercial Vehicle Integrated Traffic Safety System utilizing Connected Intelligent Transportation Systems (C-ITS) technology. This system provides functionalities for accident prevention and efficient traffic management through vehicle-to-vehicle and vehicle-to-infrastructure communications. The key findings suggest that the integrated system using C-ITS can offer functions for traffic safety and preliminary stages of autonomous driving. It is anticipated that by applying vehicle and Information and Communication Technology (ICT) technologies, traffic safety issues and driver convenience can be enhanced.