One of the most performed actionin daily life is standing up from sitting position. As the population of the world is aging at the high rates, people may face problems with reduced muscle strength as well as psychological changes. This can lead elderly people having difficulties with standing up from chair. Now, with the aging trend worldwide, products are being developed that can support the lives of the elderly. This study examines the distribution of hip pressure in relation to the seating positions of the standing assistance seats under development to prevent standing up accidents in older adults. The currently developing standing assistant chair designed to tilt to a maximum angle of 25 degrees. At over 25°, design considers that older people are at risk of thrown back out of that force and that the forces exerted on their arms and legs can be a significant burden to older people. By considering danger of higher than 25° for older people which is experimented in the basis of static capturing approach in previous papers, it is experimented people with age group of 20~60 on 0° to 25° tilting angle on the basis of dynamic capturing method in order to pick convenient angle of inclination. Moreover, tried to find the optimum angle by comparing the hip pressure distribution when seated at the edge of the seat and at the center of the seat with the pressure distribution sensor.
Purpose: This study was aimed to provide in-depth understanding of male nurses’ work adaptation experience and suggest future directions for nursing interventions for them by synthesizing individual qualitative findings. Methods: Qualitative meta-synthesis method suggested by Sandelowski and Barroso was utilized. A total of 6 qualitative studies’ findings were synthesized to describe male nurses’ experience of work adaptation in clinical settings. Results: The major task regarding male nurses’ work adaptation was ‘planting himself in the workplace.’ Its contextual and related factors to the task include: extraordinary choice for men, female-centered hierarchical work culture, gender difference vs. interindividual difference, stereotyped view on ‘male’ nurses, strengthening work identity of nursing profession, and dim future even after many years of experience. Conclusion: The findings illuminated the necessity of orchestrated efforts from both female and male nurses to form work environments overcoming gender bias and promoting adaptation of male nurses in clinical settings.
New carbazole derivatives including coumarin moiety, 7-(3-Carbazol-9-yl-phenyl)-chromen-2-one (C-PCa), 7-(9-Phenyl-9H-carbazol-3-yl)-chromen-2-one (PCa-C), 7-[9-(3-Carbazol-9-yl-phenyl)-9H-carbazol-3-yl]-chromen-2-one (PDCa-C) were synthesized by Suzuki reaction. In film state, maximum UV-Vis absorption of three synthesized compounds appeared in the range 331 to 345 nm. PL spectrum of C-PCa, PCa-C and PDCa-C showed miximum emission wavelength of 449, 467 and 467 nm, respectively. C-PCa showed white emission of current efficiency of 1.16 cd/A, power efficiency of 0.59 lm/W and C.I.E of (0.26, 0.33). PCa-C showed current efficiency of 1.13 cd/A, power efficiency of 0.62 lm/W and C.I.E of (0.19, 0.27). PDCa-C showed the highest current efficiency of 1.34 cd/A, power efficiency of 0.62 lm/W and C.I.E of (0.18, 0.23).
In this study, we prepared thin composite membranes in which a support layer and a selective layer are covalently bonded in a simple method. The graft polymerization was carried out using UV/Ozone on a commercial Poly(sulfone) (PSf) ultrafiltration membrane with Poly((ethylene glycol) methyl ether methacrylate) (PEGMA) possessing CO2affinity. As a result, nano-pores on the surface membrane were covered with PEGMA. The covalent bonding of the composite membranes has the advantage of improving stability. In addition, due to the thin selective layer formed by the graft polymerization, highly gas permeation characteristics are exhibited, and efficient process performance can be expected. The final composite membranes were investigated in terms of their chemical structures and elements, morphology, and gas permeation properties.
Commercial polystyrene-based ion exchange membranes have simple manufacturing processes, they also possess the poor durability due to their brittleness. Poly(ethylene glycol)methyl ether methacrylate with hydrophilic side chain of poly(ethylene glycol) (PEG) was used as a co-monomer to make the membranes have improved flexibility. Hydrophilicity of the anion exchange membrane was able to be adjusted by varying the chain lengths of the PEG polymers. For the preparation of the anion exchange membranes, a porous PE substrate was immersed into monomer solutions and thermally polymerized and crosslinked. The prepared membranes were then subsequently post-aminated using trimethylamine (TMA). The prepared pore-filled anion exchange membranes were evaluated in terms of ion exchange capacity (IEC), electric resistance (ER) and water uptake.
촉진수송막이란 특정기체의 이동을 촉진시키기 위한 운반체를 포함하고 있는 분리막을 말하며 일반적으로 올레핀/파라핀 분리에는 π-complexation을 할 수 있는 은이온이 운반체로 사용된다. 본 연구에서는 올레핀/파라핀 분리를 위해 은이온이 함침된 아민계 고분자를 이용하여 촉진수송막을 제조하였고 이들의 프로필렌/프로판 분리특성을 알아보았다. 순수가스 테스트를 통해 압력변화에 따른 투과도와 선택도를 구하였으며, 혼합가스 테스트를 통해 stage-cut에 따른 투과측 프로필렌 농도 및 회수율 변화를 알아보았다. 그 결과, 2bar, 25°C에서 95%의 프로필렌을 99.6%까지 농축 시킬 수 있음을 확인하였다.
철강 산업에서 발생하는 COG 부생가스에는 수소가 메탄, 질소, 황화수소, 분진 등과 함께 100만 톤 정도가 다성분의 혼합가스로 포함되어 있으나 경제적인 수소 분리기술이 부족하여 주로 저부가가치의 발전용으로 사용되고 있다. 본 연구에서는 COG 부생가스내 수소를 회수할 수 있는 비대칭 구조의 폴리이미드 중공사막의 제조를 연구하였다. 이를 위해 지환족 다이안하이드를 사용한 유기용매에 대한 용해성이 높은 폴리이미드 소재를 합성하여 수소, 메탄, 질소, 산소 등의 기체투과특성을 확인하였고 그 중 가장 수소 선택성이 높은 DOCDA-ODA를 이용하여 용해성 폴리이미드를 합성하였다. 확보된 폴리이미드를 이용해 건습식 방사법에 의한 중공사막을 제조하였다.
Well-defined methacrylate based amphiphilic block copolymers (BCs) used as additives to fabricate poly(vinylidene fluoride) (PVDF) UF membranes, where the amphiphilic BC additives hydrophilically altered PVDF with PPEGMA block segment by strong interaction with the other PMMA block segment, which reduced water resistance to the PVDF polymer solution during phase separation. FT-IR and XPS studies showed carbonyl groups of BCs in the PVDF membranes. Obtained membranes showed porous surface layer and finger-like pore structures on the sublayers, of which sizes were increased with the increase of BC contents. Obtained membranes showed MWCO with 100K PEO and the best water flux was achieved in the PVDF membrane with BC/LiCl additive and improved the anti-fouling property for BSA protein.
지표수 성상을 재현한 용액을 가압식 한외여과 시스템을 통하여 100 L/m²/h 정속 조건에서 전량 여과하였다. 공극 크기 0.05 μm의 한외여과 중공사막으로 구성된 가압식 모듈을 통해 휴민산(HA) 10 mg/L 용액과 알긴산 나트륨(SA) 10mg/L 용액, 그리고 이 두 용액에 실리카(SiO2) 입자 50 mg/L이 포함된 총 4가지 용액을 여과하였다. 여과 공정은 30분 여과 후 30초 역세와 30초 정세의 주기적 물리 세정과 병행하여 수행되었다. 실험 결과, HA와 SA 용액에 SiO2 입자가 존재하는 경우 파울링 속도는 다소 감소하였으며 특히 SA 여과에서 SiO2 입자 위에 형성된 SA 케이크층이 세정에 의해 SiO2 입자와 함께 탈착되어 물리세정에 의한 분리막 성능 회복이 크게 증가하는 것으로 나타났다.
The ultimate goal of seawater reverse osmosis brine management is to achieve minimal liquid discharge while recovering valuable resources. The suitability of an integrated system of membrane distillation (MD) with sorption for the recovery of rubidium (Rb⁺) and simultaneous SWRO brine volume reduction has been evaluated for the first time. Polymer encapsulated potassium copper hexacyanoferrate (KCuFC(PAN)) sorbent exhibited a good selectivity for Rb⁺ sorption. The integrated MD-KCuFC (PAN) system with periodic membrane cleaning, enabled 65% water recovery. A stable MD permeate flux was achieved with good quality permeate. KCuFC (PAN) showed a high regeneration and reuse capacity. Ammonium chloride air stripping followed by resorcinol formaldehyde resin filtration enabled to recover Rb⁺ from the desorbed solution.
Membrane filtration has been considered as an promising harvesting technology in the fields of microalgal biorefinery to produce biofuels and valuable chemicals from microalgal biomass. For developing the effective membrane-based harvesting process to produce highly concentrated biomass, membrane fouling should be controlled because it leads to not only reduced filtration rate but also insufficient reachable concentration of harvested biomass for downstream process. For that, a dynamic filtration using a rotating disk was evaluated in this study, efficiently generating high shear flow near the membrane surface by an independently moving part. It was demonstrated to achieve feasible filtration performance even under high biomass concentration with complete biomass recovery and moderate energy consumption observed.
이산화탄소 분리막은 이산화탄소에 대한 선택성이 우수하면서도 투과성이 뛰어나야 그 성능을 제대로 발휘할 수 있는데, 대부분의 고분자 분리막들은 투과도 및 선택도에 있어 매우 뚜렷한 상충관계를 보이고 있으며, 이러한 상충관계를 극복할 수 있는 고투과성 및 고선택성을 갖는 분리막의 개발이 시급하다 할 수 있다. 근래 PEG (polyethylene glycol)가 이산화탄소에 대한 투과선택도가 뛰어난 것이 밝혀져 많은 연구가 진행되고 있으며, 본 연구는 이에 더해 내구성이 우수한 표면고착된 PEG 함유 고분자 복합막을 제조하여 이의 이산화탄소에 대한 분리에 대하여 발표한다.