검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 9,883

        5621.
        2006.09 구독 인증기관·개인회원 무료
        The coating of conductive polypyrrole (Ppy) on nonconductive ceramic substrates was performed by polymerization of pyrrole (Py) in an aqueous solution. The Ppy film was characterized by scanning electron microscopy and conductivity measurements. Electrophoretic deposition of bimodal alumina suspension prepared with a phosphate ester was performed using Ppy film as a cathode. Fabrication of alumina ceramics with irregular shapes or complicated patterns were also attempted by sintering the deposits together with the Ppy coated substrates in air.
        5622.
        2006.09 구독 인증기관·개인회원 무료
        The mechanical properties of ceramics materials can be tailored by designing their microstructures. We have reported that development of texture can be controlled by slip casting in a strong magnetic field followed by heating even for diamagnetic ceramics such as alumina. A strong magnetic field of 12T was applied to the suspension indcuding alumina powder to rotate each particle during slip casting. The sintering was conducted at the desired temperature in air without a magnetic field. C-axis of alumina was parallel to the magnetic field. Bending strength of textured alumina depended on the direction of oriented microstructure.
        5623.
        2006.09 구독 인증기관·개인회원 무료
        The microstructure and electrical conductivity of CNTs dispersed nanocomposites depending on the powder processing and CNTs content were demonstrated. The composite powders with homogeneous dispersion of CNTs could be synthesized by a catalytic route for direct formation of CNTs on nano-sized Fe dispersed powders. The sintered nanocomposite using the composite powder with directly synthesized CNTs showed homogeneous microstructure and enhanced elelctrical conductivity. The influence of powder processing on the properties of sintered nanocomposites was discussed by the observed microstructural features.
        5624.
        2006.09 구독 인증기관·개인회원 무료
        Carbon nanotube (CNT) reinforced hydroxyapatite (HAp) composites were fabricated by using the spark plasma sintering process with surfactant modified CNT and HAp nano powder. Without the dependency on sintering temperature, the main crystal phase existed with the HAp phase although a few contents of (Tri calcium phosphate) phase were detected. The maximum fracture toughness, was obtained in the sample sintered at and on the fracture surface a typical intergranular fracture mode, as well as the pull-out pmhenomenon of CNT, was observed.
        5625.
        2006.09 구독 인증기관·개인회원 무료
        Metallic compound of ternary Al-B-C system was prepared by mechanical alloying (MA) using Al, boron and graphite powders as starting materials. MA was carried out using Spex 8000 mixer/mill for 50 hours in an argon atmosphere without process control reagent such as methyl alcohol. The MA powders obtained were heat-treated in vacuum at the temperature of 873 and 1273 K for 5 hour. Pure ternary Al-B-C compound was obtained in the chemical content of Al:B:C=55:27:18. The ternary compound obtained in this study has a new phase whose crystal structure is not identified yet.
        5626.
        2006.09 구독 인증기관·개인회원 무료
        An infiltration technique using W-Cu composite powder has been developed to enhance microstructural uniformity of W-Cu pseudo-alloy. W-Cu composite powder, manufactured by reduction from WO3 and CuO powder mixtures, were blended with W powder and then cold iso-statically pressed into a cylindrical bar under 150 MPa. The pressed samples were pre-sintered at 1300 oC for 1 hour under hydrogen to make a skeleton structure. This skeleton structure was more homogeneous than that formed by using W and Cu powder mixtures. The skeleton structures were infiltrated with Cu under hydrogen atmosphere. The infiltrated W-Cu pseudo-alloy showed homogeneous microstructure without Cu rich region.
        5627.
        2006.09 구독 인증기관·개인회원 무료
        A new tungsten heavy alloy with hybrid structure was manufactured for the kinetic energy penetrator. The tungsten heavy alloy is composed of two parts: core region is molybdenum added heavy alloy to promote the self-sharpening; outer part encompassing the core is conventional heavy alloy to sustain severe load in a muzzle during firing. From ballistic test, it was found that the penetration performance of the hybrid structure tungsten heavy alloy is higher than that of conventional heavy alloy. This heavy alloy is thought to be very useful for the penetrator in the near future.
        5628.
        2006.09 구독 인증기관·개인회원 무료
        The 21st Century Frontier Program, which is one of the R&D programs funded by Korean government, was launched in 1999 to elevate the status of Korean science and engineering capabilities to the advanced nation in the strategic fields. Currently, 23 different fields of science and engineering programs are carried out by researchers in institutes, universities and industries. Center for Advanced Materials Processing (CAMP) was formulated in 2001 to develop the advanced materials as well as to improve the parts manufacturing process. The main role of CAMP is proposing and forecasting the long term vision in Materials Processing Technology and also supporting the project teams for their best performance in R&D. The CAMP program consists of 5 research areas such as, Multi-layer Ceramic Electronic Parts, Powder Formed Precision Parts, 3 Dimensional Polymer Based Composites, Functional Metal Sheets, Parts Integration Technology. An introduction of R & D activities at CAMP, specially focusing on powder metallurgy, wil be presented.
        5629.
        2006.09 구독 인증기관·개인회원 무료
        The sintered parts are mainly used for automobile industry, and a part of air conditioners. In automobile industry, the application range of sintered parts is very broad and use for a driving and a lubricating system. And air conditioner uses them for compressor. Grinding of compressor and pump parts is very difficult these days, because these parts use High hardness materials and require high precision grinding. Tool life has to be extended to decrease production cost. We analyzed processing mechanism and developed new grinding wheels for Double Disk Grinding. And, we introduce new truing technology that improved tool-life and precision.
        5630.
        2006.09 구독 인증기관·개인회원 무료
        PCBN tools are used worldwide for machining of hardened steel parts in automotive industries. But in heavy interrupted cutting of hardened steel, the tool life is not so stable by sudden breakage of the cutting edge, and total cost of cutting by PCBN is not so economical compared to the grinding. To solve this problem, new PCBN has been developed. New PCBN has very fine and homogeneous microstructure to increase the toughness of sintered body that it provides a reliable tool life for heavy interrupted cutting.
        5631.
        2006.09 구독 인증기관·개인회원 무료
        The effect of individual gas constituents in a sintering atmosphere is examined to optimize the sintered properties of Iron-Carbon P/M components. The influence of sintered properties is reviewed as a function of hydrogen percentages and dew point in the sintering zone. Microstructures, porosity, pore morphology and dimensional changes are the subject of this review. The effects of CO containing atmospheres are compared against the non CO atmospheres in terms of hardness, carbon control and dimensional changes.
        5633.
        2006.09 구독 인증기관·개인회원 무료
        The magnetic inductance of nanocrystalline Fe73Si16B7Nb3Cu1 and an amorphous FeSiB powder sheet has been investigated to identify RFID performance. The powder was mixed with binder and solvent and tape-casted to form films. Results show annealing significantly influenced on the inductance of the material. The surface oxidation of the particles was the main reason for the reduced inductance. The maximum inductance of Fe73Si16B7Nb3Cu1 alloy was about 88μH at 17.4 MHz, about 65% greater compared to the FeSiB alloy. The higher inductance in the nanocrystalline alloy indicates it may be used as a potential replacement of current RFID materials.
        5634.
        2006.09 구독 인증기관·개인회원 무료
        W-Cu alloy was very useful material for a heat sink, high electric contact and EDM electrode. Powder injection molding (PIM) is the optimum manufacturing technology to provide W-Cu components with low-cost and high-volume. We used various compositions of tungsten coated copper powders (W-Cu with 10 to 80 wt-% of copper) to manufacture W-Cu components by PIM. The optimum mixing, injection molding, debinding and sintering conditions to provide the high performance W-Cu components were investigated. The thermal and mechanical properties of W-Cu parts by PIM were measured. Finally, we can verify the high performance of W-Cu components by PIM with the tungsten coated copper.
        5636.
        2006.09 구독 인증기관·개인회원 무료
        Filling of the tool die directly influences dimensional tolerances and density variation. To minimize the variations in filling, both within different sections of the cavity and from part to part, are of great importance for produce high quality P/M parts. Filling of the tool die is also one of the limiting factors in the productivity in powder pressing. By using aeration filling in combination with bonded powder mixes, both weight scatter and productivity can be improved. In this presentation results are presented showing the benefit of using aeration filling for different types of powders
        5637.
        2006.09 구독 인증기관·개인회원 무료
        High strength PM aluminium alloys Al-Zn-Mg-Cu (7075 type) were studied by using commercially available powder blends and the sinter-forging technique for component production. Principal areas of focus include the response to PM processing, micro structural assessment and material properties of Aluminium sinter forged products. Green preforms are successfully sintered to near full density by solid-supersolidus liquid phase sintering. Sinter forging method can produce components with net shape and mechanical characteristics of the material have improved greatly. Properties of this new PM Al-alloy were found to be reproducible in an industrial production environment.
        5638.
        2006.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The treatment of piggery wastes was carried out at pilot scale using a multilayered metal-activated carbon system followed by carbon bed filtration. The physicochemical properties were obtained from treated samples with aqueous solutions containing metallic ions such as Ag+, Cu2+, Na+, K+ and Mn2+, which main obsevations are subjected to inspect surface properties, color removal properties by Uv/Vis and EDX. Multilayered metal-activated carbons were contacted with waste water to investigation of the simultaneous catalytic effect for the COD, BOD, T-N and T-P removal. The removal results for the piggery waste using multilayered metal-activated carbon bed was achieved the satisfactory removal performance under permitted values of Ministry of Environment of Korea. The high efficiency of the multilayered metal-activated carbon bed was determined by the performance of this material for trapping, catalytic effect and adsorption of organic solid particles.
        4,000원
        5639.
        2006.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study investigates the effects of focus on form on the acquisition of the tense-aspect system in English by comparing two different instructional techniques, implicit and explicit focus on form. Furthermore, it examines which class of lexical aspect use is more applicable to each method of instruction. The implicit method is intended to produce the synergy of input flooding and typographical enhancement technique. The explicit method provides learners with pedagogical statements, corrective feedback, and some exemplars which are neither flooded nor visually enhanced. The subjects were Korean junior college students enrolled in two basic English writing classes. One class was assigned to an implicit group and the other to an explicit group. They received instruction for 10 weeks under two different learning conditions and were tested on the target structures. The results showed the overall effectiveness of implicit and explicit focus-on-form instructions on facilitating the two target structures, the simple past and present perfect, and on the lexical aspectual system as well. Although the implicit group made some progress, the gain was not statistically significant. The explicit group, however, made a significant progress in the learning of the present perfect. As for the lexical aspectual system, the implicit instruction somewhat influenced appropriate use of telic verbs, whereas the explicit instruction was more effective in facilitating the appropriate use of atelic verbs. The results indicate the importance of acquisition order and learners’ readiness in the learning of the present perfect.
        6,400원
        5640.
        2006.09 구독 인증기관 무료, 개인회원 유료
        Schwann cells play an important role in peripheral nerve regeneration. Upon nerve injury, Schwann cells are activated and produce various proinflammatory mediators including IL-6, LIF and MCP-1, which result in the recruitment of macrophages and phagocytosis of myelin debris. However, it is unclear how the nerve injury induces Schwann cell activation. Recently, it was reported that necrotic cells induce immune cell activation via toll-like receptors (TLRs). This suggests that the TLRs expressed on Schwann cells may recognize nerve damage by binding to the endogenous ligands secreted by the damaged nerve, thereby inducing Schwann cell activation. To explore the possibility, we stimulated iSC, a rat Schwann cell line, with damaged neuronal cell extracts (DNCE). The stimulation of iSC with DNCE induced the expression of various inflammatory mediators including IL-6, LIF, MCP-1 and iNOS. Studies on the signaling pathway indicate that NF-xB, p38 and JNK activation are required for the DNCE-induced inflammatory gene expression. Furthermore, treatment of either anti-TLR3 neutralizing antibody or ribonuclease inhibited the DNCE-induced proinflammatory gene expression in iSC. In summary, these results suggest that damaged neuronal cells induce inflammatory Schwann cell activation via TLR3, which might be involved in the Wallerian degeneration after a peripheral nerve injury.
        4,000원