검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 4,563

        2001.
        2010.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        고온 야금 핵연료 재활용 공정이라고 불리는 파이로프로세싱은 전망있는 핵연료 재활용 기술로써 잘 알려져 왔다. 파이로 프로세싱은 증가된 핵확산저항성과 경제적 효율 때문에 미래 원자력시스템에 있어서 중요하다. 파이로 프로세싱의 기본적인 개념은 핵확산저항성을 향상시키는 악티나이드그룹의 회수로 볼 수 있다. 파이로 프로세싱에서 중요한 공정 중 하나인 전해제련공정은 사용후핵연료로부터 우라늄과 악타나이드를 같이 회수하는 공정이다. 본 연구에서는 수직형 카드뮴 증류장치를 제작하였다. 773∼923K, 0.01torr이하의 압력조건에서 카드뮴의 증류속도는 12.3∼40.8g/cm2-h를 나타내었다. 고순도 아르곤 분위기의 글러브 박스에서 LCC 전해법으로 우라늄-카드뮴 합금을 제작하였다. 순수한 카드뮴과 우라늄-카드뮴 합금중의 카드뮴 증류거동을 조사하였다. 본 연구에서 얻을 수 있었던 카드뮴 증류거동 연구결과를 카드뮴 증류 공정의 개발에 이용할 수 있을 것이다.
        4,000원
        2002.
        2010.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The p-type thermoelectric compounds of based doped with 3wt% Te were fabricated by a combination of rapid solidification and spark plasma sintering (SPS) process. The effect of holding time during spark plasma sintering (SPS) on the microstructure and thermoelectric properties were investigated using scanning electron microscope (SEM), X-ray diffraction (XRD) and thermoelectric properties. The powders as solidified consisted of homogeneous thermoelectric phases. The thermoelectric figure of merit measured to be maximum () at the SPS temperature of .
        4,000원
        2003.
        2010.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Nickel-based and iron-based alloys have been developed and commercialized for a wide range of high performance applications at severely corrosive and high temperature environment. This alloy foam has an outstanding performance which is predestinated for diesel particulate filters, heat exchangers, and catalyst support, noise absorbers, battery, fuel cell, and flame distributers in burners in chemical and automotive industry. Production of alloy foam starts from high-tech coating technology and heat treatment of transient liquid-phase sintering in the high temperature. These technology allow for preparation of a wide variety of foam compositions such as Ni, Cr, Al, Fe on various pore size of pure nickel foam or iron foam in order for tailoring material properties to a specific application.
        4,000원
        2004.
        2010.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, as high temperature performance capable thermoelectric materials was manufactured by powder metallurgy.The as-casted Fe-Si alloy was annealed for homogenization below for 3 h. Due to its high brittleness, the cast alloy transformed to fine powders by ball-milling, followed by subsequent compaction (hydraulic pressure; 2 GPa) and sintering (, 12 h). In order to precipitate , heat treatment was performed at with varying dwell time (7, 15 and 55 h). As a result of this experiment thermoelectric phase was quickly transformed by powder metallurgical process. There was not much change in powder factor between 7h and 55h specimens.
        4,000원
        2005.
        2010.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Cu-Sn based alloys were manufactured by gas atomization spray casting route in order to achieve a fine scale microstructure and a high tensile strength. The spray cast Cu-10Sn-2Ni-0.2Si alloy had an equiaxed grain microstructure, with no formation of brittle phase. Aging treatment promoted the precipitation of finely distributed particles corresponding to intermetallic phase throughout the -(CuSn) matrix. The cold-rolled Cu-Sn-Ni-Si alloy had a very high tensile strength of 1200 MPa and an elongation of 5%. Subsequent aging treatment at for 1h slightly reduced the tensile strength to 700 MPa and remarkably increased the elongation up to 30%. This result has been explained by coarsening the precipitates due to over aging and reducing the dislocation density due to annealing effects.
        4,000원
        2009.
        2010.11 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Films consisting of a silicon quantum dot superlattice were fabricated by alternating deposition of silicon rich silicon nitride and Si3N4 layers using an rf magnetron co-sputtering system. In order to use the silicon quantum dot super lattice structure for third generation multi junction solar cell applications, it is important to control the dot size. Moreover, silicon quantum dots have to be in a regularly spaced array in the dielectric matrix material for in order to allow for effective carrier transport. In this study, therefore, we fabricated silicon quantum dot superlattice films under various conditions and investigated crystallization behavior of the silicon quantum dot super lattice structure. Fourier transform infrared spectroscopy (FTIR) spectra showed an increased intensity of the 840 cm-1 peak with increasing annealing temperature due to the increase in the number of Si-N bonds. A more conspicuous characteristic of this process is the increased intensity of the 1100 cm-1 peak. This peak was attributed to annealing induced reordering in the films that led to increased Si-N4 bonding. X-ray photoelectron spectroscopy (XPS) analysis showed that peak position was shifted to higher bonding energy as silicon 2p bonding energy changed. This transition is related to the formation of silicon quantum dots. Transmission electron microscopy (TEM) and electron spin resonance (ESR) analysis also confirmed the formation of silicon quantum dots. This study revealed that post annealing at 1100˚C for at least one hour is necessary to precipitate the silicon quantum dots in the SiNx matrix.
        4,000원
        2010.
        2010.11 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        In order to meet the requirements of faster speed and higher packing density for devices in the field ofsemiconductor manufacturing, the development of Cu/Low k device material is explored for use in multi-layer interconnection.SiOC(-H) thin films containing alkylgroup are considered the most promising among all the other low k candidate materialsfor Cu interconnection, which materials are intended to replace conventional Al wiring. Their promising character is due to theirthermal and mechanical properties, which are superior to those of organic materials such as porous SiO2, SiOF, polyimides,and poly (arylene ether). SiOC(-H) thin films containing alkylgroup are generally prepared by PECVD method usingtrimethoxysilane as precursor. Nano voids in the film originating from the sterichindrance of alkylgroup lower the dielectricconstant of the film. In this study, methyltriphenylsilane containing bulky substitute was prepared and characterized by usingNMR, single-crystal X-ray, GC-MS, GPC, FT-IR and TGA analyses. Solid-state NMR is utilized to investigate the insolublesamples and the chemical shift of 29Si. X-ray single crystal results confirm that methyltriphenylsilane is composed of one Simolecule, three phenyl rings and one methyl molecule. When methyltriphenylsilane decomposes, it produces radicals such asphenyl, diphenyl, phenylsilane, diphenylsilane, triphenylsilane, etc. From the analytical data, methyltriphenylsilane was found tobe very efficient as a CVD or PECVD precursor.
        4,000원
        2015.
        2010.10 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        This work presents a fabrication procedure to make large-area, size-tunable, periodically different shape metal arrays using nanosphere lithography (NSL) combined with ashing and annealing. A polystyrene (PS, 580 μm) monolayer, which was used as a mask, was obtained with a mixed solution of PS in methanol by multi-step spin coating. The mask morphology was changed by oxygen RIE (Reactive Ion Etching) ashing and temperature processing by microwave heating. The Au or Pt deposition resulted in size tunable nano patterns with different morphologies such as hole and dots. These processes allow outstanding control of the size and morphology of the particles. Various sizes of hole patterns were obtained by reducing the size of the PS sphere through the ashing process, and by increasing the size of the PS sphere through annealing treatment, which resulted in tcontrolling the size of the metallic nanoparticles from 30 nm to 230 nm.
        4,000원
        2016.
        2010.10 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The hydrogen energy had recognized clean and high efficiency energy source. The research field of hydrogen energy was production, storage, application and transport. The commercial storage method was using high pressure tanks but it was not safety. However metal hydride was very safety due to high chemical stability. Mg and Mg alloys are attractive as hydrogen storage materials because of their lightweight and high absorption capacity (about 7.6 wt%). Their range of applications could be further extended if their hydrogenation properties and degradation behavior could be improved. The main emphasis of this study was to find an economical manufacturing method for Mg-Ti-Ni-H systems, and to investigate their hydrogenation properties. In order to examine their hydrogenation behavior, a Sievert's type automatic pressure-compositionisotherm (PCI) apparatus was used and experiments were performed at 423, 473, 523, 573, 623 and 673 K. The results of the thermogravimetric analysis (TGA) revealed that the absorbed hydrogen contents were around 2.5wt.% for (Mg8Ti2)-10 wt.%Ni. With an increasing Ni content, the absorbed hydrogen content decreased to 1.7 wt%, whereas the dehydriding starting temperatures were lowered by some 70-100 K. The results of PCI on (Mg8Ti2)-20 wt.%Ni showed that its hydrogen capacity was around 5.5 wt% and its reversible capacity and plateau pressure were also excellent at 623 K and 673 K.
        4,000원
        2017.
        2010.10 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        In this study, partially stabilized zirconia was synthesized using a chemical Y2O3 stabilizer and hydrothermal method. First, YCl3-6H2O and ZrCl2O-8H2O was dissolved in distilled water. Y-TZP (a Y2O3-doped toughened zirconia polycrystalline precursor) was also prepared by conventional co-precipitates in the presence of an excess amount of NH4OH solution under a fixed pH of 12. The Y-TZP precursors were filtered and repeatedly washed with distilled water to remove Cl- ions. ZrO2-Xmol%Y2O3 powder was synthesized by a hydrothermal method using Teflon Vessels at 180˚C for 6 h of optimized condition. The powder added with the Xmol%- Y2O3 (X = 0,1,3,5 mol%) stabilizer of the ZrO2 was synthesized. The crystal phase, particle size, and morphologies were analyzed. Rectangular specimens of 33mm×8mm×3 mm for three-point bend tests were used in the mechanical properties evaluation. A teragonal phase was observed in the samples, which contains more than 3 mol% Y2O3. The 3Y-ZrO2 agglomerated particle size was measured at 7.01μm. The agglomerated particle was clearly observed in the sample of 5 mol % Y2O3-ZrO2, and and the agglomerated particle size was measured at 16.4 um. However, a 20 nm particle was specifically observed by FE-SEM in the sample of 3 mol% Y2O3-ZrO2. The highest bending fracture strength was measured as 321.3 MPa in sample of 3 mol% Y2O3-ZrO2.
        4,000원
        2019.
        2010.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Nanostuctured TiAl powder was synthesized by high energy ball milling. A dense nanostuctured TiAl was consolidated using pulsed current activated sintering method within 2 minutes from mechanically synthesized powders of TiAl and horizontally milled powders of Ti+Al. The grain size and hardness of TiAl sintered from horizontally milled Ti+Al powders and high energy ball milled TiAl powder were 35 nm, 20 nm and 450 kg/, 630 kg/, respectively.
        4,000원