In the Autonomous Mobility Living Lab, traffic situations with both autonomous vehicles (AVs) and ordinary vehicles driven by humans (HDVs) are explored. Research on countermeasures and efficient transportation management plans has emerged from this context. In this study, we analyzed the effect of AVs with different speeds on signal intersections and road networks to derive efficient traffic operation plans for roads on which various AVs and HDVs with different driving behaviors are mixed in Living Lab cities. To that end, we conducted a simulation-based analysis of the effects of AV mixing rates on continuous signal intersections and the road network in traffic situations where AVs and HDVs were mixed at peak and non-peak driving hours. The simulation scenario was designed by classifying the traffic volume levels at peak and non-peak times and defining various AV mixing rates; we also set the driver behaviors of the AVs as either conservative or aggressive. By performing a small-scale traffic simulation, the average control delay, average stopped delay, average queue length, and average travel time of the signal intersection for each scenario were derived, and the impact of the AV mixing rate on traffic operation was analyzed. The results of the analysis show that higher AV mixing rates were associated with lower measurements of the effectiveness of signal intersections, which had a positive effect on traffic operation. This resulted in a stable and efficient improvement of the traffic flow at intersections as more vehicles passed through at the time of the allocated signal, as the AVs in the simulation could be driven at short intervehicle intervals by receiving real-time traffic information. In the traffic operation on the network, we found that the higher the AV mixing rate, the lower the average travel time, resulting in a greater effect of facilitating the traffic flow of the urban network. These simulated results indicate that higher AV mixing rates were associated with positive outcomes in terms of signal intersections and network traffic operation. We expect that this simulation can be used to establish real traffic operation plans in traffic situations where AVs are mixed at each stage of autonomous driving technology in the future.
Desmidiales (Conjugatophyceae, Charophyta) are commonly found in freshwater ecosystems and exhibit high species diversity, particularly in acidic wetlands, lakes, swamps, and peat bogs. They possess a distinctive morphology characterized by symmetrical semicells, and their wide variation in cell shape and size presents challenges in species identification due to high morphological plasticity. Although 832 species of Desmidiales have been reported in Korea, phylogenetic studies have been limited to only a few taxonomic groups. This study focused on investigating species-level relationships among Desmidiales using strains from the Freshwater Bioresources Culture Collection (FBCC), integrating morphological characteristics, ecological data, and original species descriptions. A total of 352 new plastid gene sequences were generated for phylogenetic analyses, including accD (30), atpA (42), atpB (22), ndhH (37), petA (37), psaA (32), psbA (44), psbC (1), psbD (39), rbcL (40), rpl2 (19), and rpoB (9). Among the 12 plastid genes analyzed, psbA showed the highest proportion of conserved sites (83.9%), while petA exhibited the highest proportion of variable sites (38.7%). Based on the combined phylogenetic analysis, Desmidiales were grouped into five major clades: Cosmarium Clade-1: Cosmarium punctulatum, Cosmarium sp. 1, Cosmarium Clade-2: C. blyttii, C. botrytis, C. costatum, C. ochthodes, C. pachydermum, C. subcostatum, C. subcrenatum, C. subprotumidum, C. trilobulatum, Cosmarium Clade-3: C. angulosum, C. formosulum, C. granatum, C. impressulum, C. norimbergense, C. regnellii, C. subtumidum, Cosmarium sp. 2, Staurastrum Clade-1: Staurastrum avicula var. lunatum, Staurastrum Clade-2: S. boreale, S. dispar, S. kouwetsii, S. margaritaceum, S. punctulatum. The newly generated sequence data from FBCC strains will serve as a valuable resource for accurate species identification and for exploring the molecular ecology of Desmidiales in freshwater ecosystems. This phylogenetic framework improves our understanding of Desmidiales species diversity in Korea and aids in achieving a more comprehensive taxonomic resolution within this algal order.
원자력발전소에 설치되는 안전관련 기기는 높은 수준의 내진성능을 확보하여야 한다. 본 연구에서는 대표적인 안전관련 기기 인 전기 캐비닛을 대상으로, 열반(multi-bay) 구성 및 콘크리트 기초 열화와 같은 실제 설치 조건을 고려하여 내진성능을 평가하였다. 실제 현장에서는 전기 캐비닛이 열반 형태로 설치되는 경우가 많으며, 지지부 열화의 대표적 형태로 앵커 위치에서의 콘크리트 균열이 자주 발견된다. 이러한 조건을 반영하기 위하여, 앵커 위치에 균열 폭 0.5 mm 및 1.0 mm를 모사한 균열 기초와 건전한 기초를 대상 으로 실험체를 제작하였다. 실험체는 단순화한 전기 캐비닛 모델로서 단독(single-bay) 및 2기 열반(two-bay) 구성을 적용하였으며, 선설치 앵커로 고정 후 진동대를 이용한 한계상태 내진성능 실험을 수행하였다. 실험 결과, 균열이 없는 조건에서는 2기 열반 구성이 단독 구성보다 높은 내진성능을 보였다. 그러나 균열 조건에서는 2기 열반 구성에서 내진성능이 저하되는 경향이 나타난 반면, 단독 구성은 유의미한 성능 저하가 관찰되지 않았다.
Springtails (class Collembola) play a crucial role in soil ecosystems. They are commonly used as standard species in soil toxicity assessments. According to the ISO 11267 guidelines established by the International Organization for Standardization (ISO), Allonychiurus kimi uses adult survival and juvenile production as toxicity assessment endpoint. Conventional toxicity assessment methods require manually counting adults and larvae under a microscope after experiments, which is time-consuming and laborintensive. To overcome these limitations, this study developed a model using YOLOv8 to detect and count both adults and juveniles of A. kimi. An AI model was trained using a training dataset and evaluated using a validation dataset. Both training and validation datasets used for AI model were created by picturing plate images that included adults and larvae. Statistical comparison of validation dataset showed no significant difference between manual and automatic counts. Additionally, the model achieved high accuracies (Precision=1.0, Recall=0.95 for adults; Precision=0.95, Recall=0.83 for juveniles). This indicates that the model can successfully detect objects. Additionally, the system can automatically measure body areas of individuals, enabling more detailed assessments related to growth and development. Therefore, this study establishes that AI-based counting methods in toxicity assessments with offer high levels of accuracy and efficiency can effectively replace traditional manual counting methods. This method significantly enhances the efficiency of large-scale toxicity evaluations while reducing researcher workload.
Maintaining probiotic viability during storage, freeze-drying, and gastrointestinal transit is essential to ensure efficacy. The present study evaluated VitaShield Coating® (VSC), an innovative stabilization technology incorporating vitamins A, C, and E, for enhancing the viability of Bifidobacterium strains. VSC-coated B. bifidum BGN4 exhibited a significantly higher freeze-drying recovery rate (43.91±4.69%) compared to that of the uncoated group (15.31±6.53%, p<0.0001), with scanning electron microscopy (SEM) confirming preservation of structural integrity. Gastrointestinal stability also improved, as coated cells retained 26.21±2.41% viability in simulated gastric fluid, significantly outperforming uncoated cells (3.20±2.30%, p<0.0001). Gas chromatography-mass spectrometry (GC-MS) revealed a significant increase in polyunsaturated fatty acids (PUFAs) in coated cells, indicating enhanced membrane stability. Furthermore, storage stability of four Bifidobacterium strains (AD011, BORI, BGN4, and RAPO) was evaluated over 16 weeks at 25℃ and 30℃. The findings indicate that the VSC coating effectively protects probiotic strains under harsh storage conditions, mitigating viability loss over time. Overall, this study showed that the VSC coating serves as a multifunctional stabilization technology that provides mechanical, osmotic, and oxidative stress protection. Its ability to improve probiotic survival under harsh conditions enables its practical and scalable use in formulations and enhances stability.
선박의 추진전동기는 소량 주문생산되어 고장진단을 위한 신호를 사전에 확보하는 것이 불가능하다. 운용기간 중 계측을 통해 데이터를 확보하는 것은 많은 시간과 비용을 초래하기에 물리모델을 통해 데이터를 확보하는 것이 유일한 방법이다. 물리모델을 통해 얻 은 데이터를 고장진단에 활용하기 위하여 데이터의 정확도를 확보해야 한다. 기존 전동기 물리모델의 경우 전동기에서 발생하는 구조-전 기 연성효과를 온전히 고려하지 않아 진동데이터의 해석 오차가 발생하는 것을 확인할 수 있다. 본 논문에서는 구조-전기 완전연성 물리 모델을 개발하여 물리모델데이터의 정확도를 개선하였다. 실험계측 데이터와 물리모델 데이터의 비교를 통해 전동기 상태별 데이터를 높 은 정확도로 획득할 수 있음을 확인하였다. 본 논문에서 제시한 구조-전기 완전연성 물리모델을 이용하여 정상상태와 결함상태에서 나타 나는 진동수준을 예측할 수 있음을 확인하였으며, 구조-전기 완전연성 반영 필요성을 입증하였다.
급성 림프구성 백혈병의 항암치료는 메토트렉세이트, 6-머캅토퓨린, 빈크리스틴, 아스파라기나제와 같은 약제를 기반으로 한다. 아스파라기나아제 관련 췌장염은 최대 18%의 발병률을 보이는 것으로 알려져 있으며, 급성 발병 및 만성 합병증으로 백혈병에 대한 항암 치료를 중단하는 주요 원인이다. 백혈병 환자에서 항암제에 의한 췌장주위 체액저류를 치료한 사례는 다양하다. 최근 WON (벽으로 둘러 쌓인 괴사) 배액을 위해 내강 인접 금속 스텐트(LAMS)의 사용이 증가하였다. 전기 소작술로 강화된 전달 시스템을 통해 스텐트 배치가 더 간단하고 빨라졌으며 전체 절차가 간소화되고 잠재적으로 절차 시간이 단축되었다. 따라서 다양한 질환의 내시경 배액술에 LAMS를 사용하면 좋은 결과가 보고되고 있다. 본 논문에서는 급성 림프구성 백혈병을 앓고 있는 성인 환자의 L-아스파라기나제 유발 급성 췌장염 및 췌장 가성낭종을 치료하기 위해 hot-system LAMS를 시행한 사례를 논의하고자 한다.
This study explores the application of Blade Element Theory (BET) to predict the aerodynamic performance of three-dimensional propellers, addressing the computational challenges associated with traditional methods like moving mesh and Multiple Reference Frame (MRF). By utilizing two-dimensional flow analysis to compute lift and drag coefficients, this approach enables rapid and efficient aerodynamic performance predictions with significant reductions in computational time. Comparative analysis with three-dimensional simulations reveals BET's accuracy, with thrust predictions showing slight overestimation at higher RPMs. Findings highlight BET's potential for preliminary propeller design, particularly for low-solidity, low-speed applications. This method provides an efficient alternative for optimizing propeller performance in electric vertical takeoff and landing (eVTOL) systems, pivotal for advancing Urban Air Mobility (UAM) solutions.