In this work, we have designed a novel gas inlet structure for efficient usage of growth and doping precursors. Our previous gas injection configuration is that the gas is mixed to one pipe first, then divided into two pipes, and finally entered the chamber symmetrically above the substrate without a jet nozzle. The distance between gas inlet and substrate is about 14.75 cm. Our new design is to add a new tube in the center of the susceptor, and the distance between the new tube and substrate is about 0.5 cm. In this new design, different gas injection configurations have been planned such that the gas flow in the reactor aids the transport of reaction species toward the sample surface, expecting the utilization efficiency of the precursors being improved in this method. Experiments have shown that a high doping efficiency and fast growth could be achieved concurrently in diamond growth when methane and diborane come from this new inlet, demonstrating a successful implementation of the design to a diamond microwave plasma chemical vapor deposition system. Compared to our previous gas injection configuration, the growth rate increases by 15-fold and the boron concentration increases by ~ 10 times. COMSOL simulation has shown that surface reaction and precursor supply both have a change in determining the growth rate and doping concentration. The current results could be further applied to other dopants for solving the low doping efficiency problems in ultra-wide-band-gap semiconductor materials.
순환여과양식시스템(RAS)은 사육수를 여과하여 재사용하며 고밀도로 사육하는 양식 방법으로 수질관리 및 소독이 매우 중요하다. 병원체로 인한 질병 발생을 예방하고 수질 개선에 도움을 주기 위하여 최근 코로나 방전 플라즈마 처리수(plasma water, PW)를 이용한 사육수 소독법이 제안되었다. 본 연구에서는 플라즈마 발생장치를 설치한 순환여과시스템(처리구, PW system) 과 설치하지 않은 순환여과시스템(대조구, No PW system)에서 40일 동안 틸라피아를 사육하 면서 수질 변화 및 어체의 성장을 조사하였다. 이를 위해 10일 마다 물을 채수하여 UV 투과율 과 일반 세균 수 변화를 측정하였고 틸라피아의 성장지표, 생존율 및 조직학적인 차이를 분 석하였다. UV 투과율 실험 결과 처리구와 대조구는 실험 시작 시에(0일) 각각 74.1%, 74.8%를 나타냈으며, 40일째에 처리구는 91.8%로 증가한 반면 대조구는 65.2%로 감소하여 수중 유기 물 감소 효과를 확인하였다. 일반 세균 수는 40일에 이르러 처리구(101.69 CFU/ml)에서 대조구 (103.25 CFU/ml) 보다 유의하게 감소하였다(p<0.05). 틸라피아 성장차이 조사 결과 처리구는 대조구에 비해 총 증중량이 유의하게 높았으며(p<0.05), 다른 성장지표도 처리구가 상대적으로 높았으나 통계적으로 유의한 차이는 아니었다(p>0.05). 또한 처리구는 100%의 생존율을 보였 으며, 조직학적으로 대조구와 차이가 나타나지 않았다. 따라서 플라즈마 처리수는 순환여과양 식시스템 내 어류의 성장과 건강에 해를 끼치지 않고 수질 개선에도 효과가 있을 것으로 기대 된다. 그러나 현장 적용 시에는 탈기수조의 설치 등 주의사항을 충분히 고려하여야 할 것이다.
본 연구에서는 플라즈마 발생장치를 수경재배 시스템과 결 합하여 재배 기간 동안 처리 시 상추의 생육 및 기능성 물질 함량 변화를 살펴보기 위해 실시하였다. 3주 동안 육묘하여 균일 한 크기의 상추 묘를 semi-DFT에 정식하였으며, 플라즈마 공정 장치를 결합하여 4주 동안 8시간 주기로 1시간씩 수중에서 간헐적으로 작동시켰다. 양액(대조구), 플라즈마 활성수 (4.2kV, 5.7kV)를 사용하여 온실에서 재배하였으며 이후 수확하여 생육조사 및 기능성 물질 분석을 실시하였다. 플라즈마 활성수 처리 기간 동안 발생되는 활성산소종 중에서 O3로 인하여 플라즈마 발생 장치에 근접한 개체일수록 갈색 반점 및 괴사현상이 나타났으며, 생육조사를 실시한 결과 유의적 차이가 나타나지 않았다. 기능성 물질 분석 결과 상추 지상부의 rutin과 총 페놀 함량은 플라즈마수보다 높았지만, epicatechin 의 경우 플라즈마수 처리에서 함량이 더 많았다. 근권부에서 측정된 이차대사산물인 rutin, epicatechin, quercetin 및 총 페놀 함량은 대조구보다 플라즈마수 처리구에서 유의하게 높았다. 이러한 결과는 플라즈마수 처리 시간동안 수중에 오존과 같은 활성산소종으로 인해 지상부 생육이 잘 이루어지지 못했으나, 근권 영역에서는 이차대사산물이 크게 증가하였다. 향후 간헐적인 플라즈마 활성수 생성에 따른 생리 장해를 극복 하고 뿌리채소의 수경재배 시스템에 적용하여 이차대사산물 을 증가시키기 위한 본 기술의 도입이 필요하다.
Effects of a commercial scale intervention system combining ultraviolet (UV)-C and plasma treatments on the microbial decontamination of black pepper powder were investigated. The process parameters include treatment time, time for plasma accumulation before treatment, and water activity of black pepper powder. A significant reduction in the number of indigenous aerobic mesophilic bacteria in black pepper powder was observed after treatments lasted for ≥ 20 min (p<0.05) and the reduction was differed by powder manufacturer. The microbial reduction rates obtained by individual UV-C treatment, individual plasma treatment, and UV-C/plasma-combined treatment were 0.2, 0.5, and 1.0 log CFU/g, respectively, suggesting that the efficacy of the microbial inactivation was enhanced by treatment combination. Nonetheless, neither plasma accumulation time nor powder water activity affected the microbial inactivation efficacy of the combined treatment. The UV-C/plasma-combined treatment, however, decreased lightness of black pepper powder, and the decrease generally increased as operation time increased. The plasma accumulation time of 20 min resulted in significant reduction in both lightness and brown color. The results indicate that the commercial-scale intervention system combining treatments of UV-C and plasma has the potential to be applied in the food industry for decontaminating black pepper powder.
In this study, a relatively effective process is used to sterilize Escherichia coli on the surface of micro-sized calcium citrate powder using nitrogen and argon as process gases in a low-temperature vacuum plasma treatment. The purpose of this study is to confirm and to introduce the effectiveness of homogeneous surface treatment for the sterilization of fine inorganic powder by the rotatable low-temperature RF plasma system designed by ourselves. The results of the test using 3M petrifilm showed that there were no remarkable spots in the case of the surface of plasma treated powder, whereas the untreated powder showed many blue spots, which indicating that the E. coli was alive. After 5 days, in the same samples, the blue spots were seen to be larger and darker than before, while the plasma-treated powder showed no changes. The results from FE-SEM analysis showed that the E. coli was damaged and/or destroyed by reactive species generated in the plasma space, resulting in the E. coli being sterilized. Furthermore, the sterilization effects according to the selected parameters (N2 and Ar; flow rate 30 and 50 sccm) adapted in this study were mutually similar, regardless of such different process parameters, and this indicates that homogeneous treatment of powder surfaces could be more effective than conventional methods. Therefore, the plasma apparatus used in this study may be a practical method to use in a powerful sterilization process in powder-type food.
In the current study, oxidative decomposition of a volatile organic compound was investigated at room temperature and pressure. The experiment was carried out in lower ethylene concentration and with various higher gas flow rates. The reactor has 7 different compartments in which the reaction takes place independently. Plasma was generated inside each compartment by the application of alternating current (AC) voltage. 5 wt% manganese loaded and 5 wt% silver loaded 13X zeolite were used as catalysts. Bare zeolite showed higher ethylene decomposition efficiency than Ag loaded and Mn loaded zeolite. Ozone concentration was increased slightly while increasing the SIE, reached a maximum and started decreasing. Ag loaded zeolite also showed similar decomposition efficiency, but the concentration of ozone was greatly lowered.
Lanthanum/gadolinium zirconate coatings are deposited via suspension plasma spray with suspensions fabricated by a planetary mill and compared with hot-pressed samples via solid-state reaction. With increase in processing time of the planetary mill, the mean size and BET surface area change rapidly in the case of lanthanum oxide powder. By using suspensions of planetary-milled mixture between lanthanum or gadolinium oxide and nano zirconia, dense thick coatings with fully-developed pyrochlore phases are obtained. The possibilities of these SPS-prepared coatings for TBC application are also discussed.
2010년 전국적으로 소, 돼지와 같은 동물에 구제역이 발병하였고, 이에 전국에 약 4,800여개의 매몰지가 긴급 조성되고 약 300만 마리의 동물들을 살처분 되었다. 이렇게 조성된 매몰지 내부에서는 가축사체가 부패하는 과정에서 황화수소, 메르캅탄류, 아민류 와 같은 악취물질이 생성되고, 매몰지 이설과정에서 대기 중으로 확산된다. 본 연구에서 는 가축 매몰지 이설과정 중에 발생하는 황 계열 물질을 저온 플라즈마 시스템을 적용하 여 저감하고자 하였다. 특히 플라즈마 시스템에서 상대습도에 따른 황화수소와 다이메틸 다이설파이드(DMDS) 제거량 변화를 실험적으로 확인하였다. 동일한 유입 조건에서 상대 습도가 증가함에 따라 황화수소와 DMDS의 제거율은 증가하였고, 이는 상대습도가 높아 지면서 발생하는 오존량이 증가하였기 때문이었다. 황화수소와 DMDS의 오존 반응식을 깁스 자유에너지로 비교해보면 DMDS의 오존 산화가 더 높은 에너지를 방출하는 것으로 나타나며, 이에 따라 황화수소보다는 DMDS가 먼저 오존에 의해 산화되며 남은 황화수 소는 촉매 층에서 추가 반응하는 것으로 판단된다.
코로나방전플라즈마제트(CDPJ) 생성장치를 제작하여 조업특성을 조사하고 비가열살균기술로서의 활용가능성을 탐색하고자 E. coli를 대상으로 살균성능을 조사하였다. CDPJ장치는 전력공급장치, 변압기, 전극, 송풍기, 시료처리부 등 다섯 부분으로 구성하였다. 전압 10.0-20.0 kV의 직류전기를 10.0-45.0 kHz 구형파 펄스형태로 텅스텐리드 전극에 투입함으로써 코로나방전 플라즈마를 생성하고 동시에 전극사이로 강한 공기를 주입함으로써 하부방향으로 토출하는 플라즈마제트를 생성하였다. CDPJ 처리는 플라즈마 토출구 하부에 처리대상 물체를 위치하고 일정시간 처리하는 방식으로 시행하였다. 주파수를 높일수록 다량의 전류가 유입되었고, 비례하여 전력소비량도 증가하였다. 플라즈마 생성을 위한 임계전류는 1.0 A, 임계주파수는 32.5 kHz이었으며, 1.5 A 이상 40.0 kHz 이상에서 안정적인 플라즈마제트가 생성되었다. 플라즈마제트의 길이는 전류에 따라 증가하였고, 2분 이하 처리 시 대상물체의 표면온도 상승은 25oC를 하회하였다. E. coli 살균력은 전류세기에 비례하여 증가하였고, 전류 1.5 A에서 1분간 CDPJ처리에 의해 4.5 log 이상의 살균효과를 보였으며, 살균패턴은 2단계 1차 반응으로 확인되었다.
비열살균기술로서 저온플라즈마 활용 가능성을 탐색하고자 유전체장벽 방전 플라즈마(DBDP)생성장치를 제작하여 최적 플라즈마생성 조건을 도출하고 Staphylococcus aureus를 대상으로 살균성능을 조사하였다. DBDP생성장치는 전력공급장치, 변압기, 전극, 시료처리부 등 네 부분으로 구성하였다. 인가전압은 단상 200 V AC를 사용하고, 변압기를 통하여 10.0-50.0 kV로 변환하고 10.0-50.0 kHz의 주파수의 펄스 구형파를 유전체인 세라믹 블록 내에 장치한 전극에 투입함으로써 상압에서 플라즈마를 생성하였다. 주파수를 올림에 따라 높은 전류가 유입되었고, 이에 비례하여 전력소비량이 증가하였다. 전류세기 1.0-2.0 A, 주파수 32.0-35.3 kHz 범위에서 균일하고 안정적인 플라즈마 발생이 이루어졌으며 시료를 투입하지 않은 상태에서의 최적 전극간격은 1.85 mm 이었다. 전극간격을 높임에 따라 소비 전력이 증가하였으나 시료 처리에 적합한 전극간격은 2.65 mm였다. DBDP 처리에 의한 온도상승은 최대 20oC에 불과하여 열에 의한 생물학적 효과는 무시할 수 있었으며 따라서 비열기술임이 확인되었다. Staphylococcus aureus를 대상으로 DBDP 처리할 경우 초기 5분 동안은 살균치가 직선적인 증가를 보이다가 이후 다소 완만해지는 경향을 보였으며 1.25 A에서 10분간 처리 시 살균치는 5.0을 상회하였다.
We investigated dry etching of acrylic (PMMA) in O2/N2 plasmas using a multi-layers electrode reactive ion etching (RIE) system. The multi-layers electrode RIE system had an electrode (or a chuck) consisted of 4 individual layers in a series. The diameter of the electrodes was 150 mm. The etch process parameters we studied were both applied RIE chuck power on the electrodes and % O2 composition in the N2/O2 plasma mixtures. In details, the RIE chuck power was changed from 75 to 200 W.% O2 in the plasmas was varied from 0 to 100% at the fixed total gas flow rates of 20 sccm. The etch results of acrylic in the multilayers electrode RIE system were characterized in terms of negatively induced dc bias on the electrode, etch rates and RMS surface roughness. Etch rate of acrylic was increased more than twice from about 0.2μm/min to over 0.4μm/min when RIE chuck power was changed from 75 to 200 W. 1 sigma uniformity of etch rate variation of acrylic on the 4 layers electrode was slightly increased from 2.3 to 3.2% when RIE chuck power was changed from 75 to 200 W at the fixed etch condition of 16 sccm O2/4 sccm N2 gas flow and 100 mTorr chamber pressure. Surface morphology was also investigated using both a surface profilometry and scanning electron microscopy (SEM). The RMS roughness of etched acrylic surface was strongly affected by % O2 composition in the O2/N2 plasmas. However, RIE chuck power changes hardly affected the roughness results in the range of 75-200 W. During etching experiment, Optical Emission Spectroscopy (OES) data was taken and we found both N2 peak (354.27 nm) and O2 peak (777.54 nm). The preliminarily overall results showed that the multi-layers electrode concept could be successfully utilized for high volume reactive ion etching of acrylic in the future.
Mechanical alloying using high-energy ball mill and subsequent spark plasma sintering (SPS) process was applied to understand mechanical alloying processing of Al-Fe alloy system. The thermal stability of mechanically alloyed Al-Fe alloy was intended to be enhanced by SPS process. Various analytical techniques including particle size analysis, density measurement, micro-Vickers hardness test, SEM, TEM, and X-ray diffractometry were adopted to find optimum processing conditions for mechanical alloying and subsequent SPS and to estimate thermal stability of the prepared alloy. It was found from the treatment of mechanically alloyed Al-8wt.%Fe powder mixture that needle-shaped precipitates was formed in the Al-Fe matrix, and the alloy compact showed enhanced densification and reached its full density with little loss of its fine microstructure. After heat treatment at , it was also shown that the thermal stability of Al-8wt.%Fe alloy fabricated in the present study was enhanced, which was due to its fine microstructure developed by fast densification of SPS.
Mechanical alloying using high-energy ball mill and subsequent spark plasma sintering (SPS) process was applied to Al-Fe-Cr and Al-Fe-Mo powder mixture to investigate effects of Cr and Mo addition on thermal stability of Al-Fe, and thereby to enhance its thermal stability up to . Various analytical techniques including micro-Vickers hardness test, SEM, TEM, X-ray diffractometry and corrosion test were carried out. It was found that addition of Cr and Mo to Al-Fe system played a role of grain growth inhibitor of matrix Al and some precipitates such as during SPS and subsequent heat treatment. The inhibition of grain growth resulted in increased Vickers hardness and thermal stability up to comparing to those of Al-Fe alloy system.
Normally, non-metallic wastes, such as sands, concrete and asbestos are regarded as electrically non-conductive materials. However, when the temperatures are increased up to the melting point, their electrical conductivities can be greatly improved, flowing arc current. Accordingly, these nonmetallic wastes can be efficiently treated by heating them up to the electrically conducting temperatures by using a non-transferred type plasma torch, and then, melting them completely with arc currents in transferred mode of plasma torch. For this purpose, we propose a convertible plasma torch consisting of three cylindrical electrodes (rear electrode, front electrode and exit nozzle). Compared with conventional plasma torch with two cylindrical electrodes (rear electrode and front electrode), the proposed plasma torch can provide more stable plasma jet in high powered and non-transferred mode due to the presence of exit nozzle, resulting in rapid heating of the non-conductive materials.
KHNP-CRI has developed small-capacity and Mega-Watt Class PTM (Plasma Torch Melter) for the purpose of reducing the volume of radioactive waste and immobilizing or solidifying radioactive materials. About 1 MW PTM is a treatment technology that operates a plasma torch and puts drumshaped waste into a melter and radioactive waste in the form of slag is discharged into a waste container. The small-capacity PTM is a treatment technology that operates a plasma torch and puts small amounts of radioactive waste by directly putting it into the melter through a waste input machine. Mega-Watt Class PTM was able to inject radioactive waste in drums, so it was disposed of without backloging. On the other hand, The small-capacity PTM put radioactive waste without a package, and the waste input was blocked. If even small-capacity PTM put radioactive waste in the form of small packages such as drums, it is expected that various types of radioactive waste can be processed for a long time. Packaging also reduces the risk of radioactive contamination.
In KHNP CRI, the PTMs (plasma torch melting system) was developed as a treatment technology of a wide variety of radioactive wastes generated by nuclear power plants. The facility is made of melting zone, thermal decomposition zone, melt discharge zone, waste feeding device, MMI, and offgas treatment system. In this study, demonstration test was conducted using NaOH solution as liquid waste to evaluation the applicability of the PTM system. For demonstration test of NaOH solution treatment, the plasma melting zone is sufficiently pre-heated by the plasma torch for 5 hours. The temperature inside the plasma melting zone is about 1,600°C. The NaOH solution as simulant was put into the thermal decomposition zone by the spray feeding device with the throughput of maximum 30 liter/hour. During the test, the power of plasma torch is about 100 kW on the transferred mode. The 160 liters of liquid waste was treated for 500 minutes. After the demonstration test, the final product in the form of salt was remained in the melting zone, and the disposal of the final product are still under consideration.