검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 106

        41.
        2011.04 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        We have investigated the structural and electrical properties of Ga-doped ZnO (GZO) thin films deposited by anRF magnetron sputtering at various RF powers from 50 to 90W. All the GZO thin films are grown as a hexagonal wurtzitephase with highly c-axis preferred parameters. The structural and electrical properties are strongly related to the RF power. Thegrain size increases as the RF power increases since the columnar growth of GZO thin film is enhanced at an elevated RFpower. This result means that the crystallinity of GZO is improved as the RF power increases. The resistivity of GZO rapidlydecreases as the RF power increases up to 70W and saturates to 90W. In contrast, the electron concentration of GZO increasesas the RF power increases up to 70W and saturates to 90W. GZO thin film shows the lowest resistivity of 2.2×10−4Ωcmand the highest electron concentration of 1.7×1021cm−3 at 90W. The mobility of GZO increases as the RF power increasessince the grain boundary scattering decreases due to the reduced density of the grain boundary at a high RF power. Thetransmittance of GZO thin films in the visible range is above 90%. GZO is a feasible transparent electrode for application asa transparent electrode for thin film solar cells.
        4,000원
        42.
        2011.03 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        We have investigated the structural and optical properties of Ga-doped ZnO (GZO) thin films deposited by RFmagnetron sputtering at various deposition temperatures from 100 to 500oC. All the GZO thin films are grown as a hexagonalwurtzite phase with highly c-axis preferred parameter. The structural and electrical properties are strongly related to depositiontemperature. The grain size increases with the increasing deposition temperature up to 400oC and then decreases at 500oC. Thedependence of grain size on the deposition temperature results from the variation of thermal activation energy. The resistivityof GZO thin film decreases with the increasing deposition temperature up to 300oC and then decreases up to 500oC. GZO thinfilm shows the lowest resistivity of 4.3×10−4Ωcm and highest electron concentration of 1.0×1021cm−3 at 300oC. The mobilityof GZO thin films increases with the increasing deposition temperature up to 400oC and then decreases at 500oC. GZO thinfilm shows the highest resistivity of 14.1cm2/Vs. The transmittance of GZO thin films in the visible range is above 87% atall the deposition temperatures. GZO is a feasible transparent electrode for the application to the transparent electrode of thinfilm solar cells.
        4,000원
        43.
        2010.10 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Changes in surface morphology and roughness of dc sputtered ZnO:Al/Ag back reflectors by varying the deposition temperature and their influence on the performance of flexible silicon thin film solar cells were systematically investigated. By increasing the deposition temperature from 25˚C to 500˚C, the grain size of Ag thin films increased from 100 nm to 1000 nm and the grain size distribution became irregular, which resulted in an increment of surface roughness from 6.6 nm to 46.6 nm. Even after the 100 nm thick ZnO:Al film deposition, the surface morphology and roughness of the ZnO:Al/Ag double structured back reflectors were the same as those of the Ag layers, meaning that the ZnO:Al films were deposited conformally on the Ag films without unnecessary changes in the surfacefeatures. The diffused reflectance of the back reflectors improved significantly with the increasing grain size and surface roughness of the Ag films, and in particular, an enhanced diffused reflectance in the long wavelength over 800 nm was observed in the Ag back reflectors deposited at 500˚C, which had an irregular grain size distribution of 200-1000 nm and large surface roughness. The improved light scattering properties on the rough ZnO:Al/Ag back reflector surfaces led to an increase of light trapping in the solar cells, and this resulted in a noticeable improvement in the Jsc values from 9.94 mA/cm2 for the flat Ag back reflector at 25˚C to 13.36 mA/cm2 for the rough one at 500˚C. A conversion efficiency of 7.60% (Voc = 0.93, Jsc = 13.36 mA/cm2, FF = 61%) was achieved in the flexible silicon thin film solar cells at this moment.
        4,000원
        46.
        2010.07 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Transparent conducting aluminum-doped ZnO thin films were deposited using a sol-gel process. In this study, the important deposition parameters were investigated thoroughly to determine the appropriate procedures to grow large area thin films with low resistivity and high transparency at low cost for device applications. The doping concentration of aluminum was adjusted in a range from 1 to 4 mol% by controlling the precursor concentration. The annealing temperatures for the pre-heat treatment and post-heat treatment was 250˚C and 400-600˚C, respectively. The SEM images show that Al doped and undoped ZnO films were quite uniform and compact. The XRD pattern shows that the Al doped ZnO film has poorer crystallinity than the undoped films. The crystal quality of Al doped ZnO films was improved with an increase of the annealing temperature to 600˚C. Although the structure of the aluminum doped ZnO films did not have a preferred orientation along the (002) plane, these films had high transmittance (> 87%) in the visible region. The absorption edge was observed at approximately 370 nm, and the absorption wavelength showed a blue-shift with increasing doping concentration. The ZnO films annealed at 500˚C showed the lowest resistivity at 1 mol% Al doping.
        4,000원
        47.
        2010.05 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        One of the weak points of the Cr-doped SZO is that until now, it has only been fabricated on perovskite substrates, whereas NiO-ReRAM devices have already been deposited on Si substrates. The fabrication of RAM devices on Si substrates is important for commercialization because conventional electronics are based mainly on silicon materials. Cr-doped ReRAM will find a wide range of applications in embedded systems or conventional memory device manufacturing processes if it can be fabricated on Si substrates. For application of the commercial memory device, Cr-doped SrZrO3 perovskite thin films were deposited on a SrRuO3 bottom electrode/Si(100)substrate using pulsed laser deposition. XRD peaks corresponding to the (112), (004) and (132) planes of both the SZO and SRO were observed with the highest intensity along the (112) direction. The positions of the SZO grains matched those of the SRO grains. A well-controlled interface between the SrZrO3:Cr perovskite and the SrRuO3 bottom electrode were fabricated, so that good resistive switching behavior was observed with an on/off ratio higher than 102. A pulse test showed the switching behavior of the Pt/SrZrO3:Cr/SrRuO3 device under a pulse of 10 kHz for 104 cycles. The resistive switching memory devices made of the Cr-doped SrZrO3 thin films deposited on Si substrates are expected to be more compatible with conventional Si-based electronics.
        4,000원
        48.
        2010.04 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Transparent conducting oxide (TCO) films are widely used for optoelectronic applications. Among TCO materials,zinc oxide (ZnO) has been studied extensively for its high optical transmission and electrical conduction. In this study, the effectsof O2 plasma pretreatment on the properties of Ga-doped ZnO films (GZO) on polyethylene naphthalate (PEN) substrate werestudied. The O2 plasma pretreatment process was used instead of conventional oxide buffer layers. The O2 plasma treatmentprocess has several merits compared with the oxide buffer layer treatment, especially on a mass production scale. In this process,an additional sputtering system for oxide composition is not needed and the plasma treatment process is easily adopted as anin-line process. GZO films were fabricated by RF magnetron sputtering process. To improve surface energy and adhesionbetween the PEN substrate and the GZO film, the O2 plasma pre-treatment process was used prior to GZO sputtering. As theRF power and the treatment time increased, the contact angle decreased and the RMS surface roughness increased significantly.It is believed that the surface energy and adhesive force of the polymer surfaces increased with the O2 plasma treatment andthat the crystallinity and grain size of the GZO films increased. When the RF power was 100W and the treatment time was120 sec in the O2 plasma pretreatment process, the resistivity of the GZO films on the PEN substrate was 1.05×10-3Ω-cm,which is an appropriate range for most optoelectronic applications.
        4,000원
        49.
        2010.01 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Various thicknesses of Al-doped ZnO (AZO) films were deposited on glass substrate using pulsed dcmagnetron sputtering with a cylindrical target designed for large-area high-speed deposition. The structural,electrical, and optical properties of the films of various thicknesses were characterized. All deposited AZO filmshave (0002) preferred orientation with the c-axis perpendicular to the substrate. Crystal quality and surfacemorphology of the films changed according to the film thickness. The samples with higher surface roughnessexhibited lower Hall mobility. Analysis of the measured data of the optical band gap and the carrierconcentration revealed that there were no changes for all the film thicknesses. The optical transmittances weremore than 85% regardless of film thickness within the visible wavelength region. The lowest resistivity,4.13×10-4Ω·cm-1, was found in 750nm films with an electron mobility (µ) of 10.6cm2V-1s-1 and a carrierconcentration (n) of 1.42×1021cm-3.
        3,000원
        50.
        2009.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        In this study, we analyzed the effect of silicon oxynitride matrix on the optical properties of Au nanoparticles dispersed on composite film and explored the effectiveness of the silicon in fine tuning the refractive index of the composite film for applications in optical waveguide devices. The atomic fraction of nitrogen in SiOxNy films was controlled by varying the relative flow ratio of nitrogen gas in reactive sputtering and was evaluated optically using an effective medium theory with Bruggeman geometry consisting of a random mixture between SiO2 and Si3N4. The Au nanoparticles were embedded in the SiOxNy matrix by employing the alternating deposition technique and clearly showed an absorption peak due to the excitation of surface plasmon. With increasing nitrogen atomic fraction in the matrix, the surface plasmon resonance wavelength shifted to a longer wavelength (a red-shift) with an enhanced resonance absorption. These characteristics were interpreted using the Maxwell-Garnett effective medium theory. The formation of a guided mode in a slab waveguide consisting of 3 μm thick Au:SiOxNy nanocomposite film was confirmed at the telecommunication wavelength of 1550 nm by prism coupler method and compared with the case of using SiO2 matrix. The use of SiOxNy matrix provides an effective way of controlling the mode confinement while maintaining or even enhancing the surface plasmon resonance properties.
        4,000원
        51.
        2009.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Ultraviolet curable coating solution was prepared with poly(ethylene glycol) acrylate oligomer and various mono and multi-functional acrylate monomers. The optical properties of UV cured coating layer on PET film with acrylate coating solution containing metal oxides, such as fumed silica and alumina, were also investigated to reduce light reflection on films. Poly(ethylene glycol) diacrylate which has 575 of average molecular weight was used as oligomer acrylate, and pentaerythritol triacrylate and dipentaerythritolpenta-/hexa acrylate were used as multi-functional acrylate monomers. Also, butyl acrylate was used to improve the adhesion as well as to reduce glass transition temperature to give a better flexability. 1-hydroxy cyclohexyl phenyl ketone was used as photoinitiator. We found out the metal oxides in acrylate coating solution showed a homogeneous dispersion from energy dispersive spectroscopy data. Transmittance and light reflection of coated PET film was measured with UV/vis spectrometer and gloss meter, respectively. When 1.00 g of both metal oxides was added into coating solution, the transmittance and the glossiness were reduced from 90% to 30% and from 190 GU to 35 GU, respectively. However, adding up to 1.00 g of the metal oxide into coating solution did not affect on the hardness of coating layer and adhesion between coated layer and PET film. Conclusively, we can control transmittance and light reflection of coated film by adjusting the amounts of metal oxide in coating solution.
        4,000원
        52.
        2009.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        We carried out this experiment to observe an electrochemical properties for LB films of alkyl compounds by the cyclic voltammetry. Alkyl bromides was deposited by using the Langmuir- Blodgett method on the ITO glass. We measured to an electrochemical measurement by using cyclic voltammetry with a three-electrode system(an Ag/AgCl reference electrode, a platinum wire counter electrode and LB film-coated ITO working electrode) in 0.5, 1.0, 1.5 and 2.0 N NaClO4 solution. A measuring range was reduced from initial potential to -1350 mV, continuously oxidized to 1650 mV. The scan rate were 100 mV/s. As a result, an electrochemical properties of the LB films of alkyl bromides appeared irreversible process caused by only the oxidation current from the cyclic voltammogram. The diffusivity(D) effect of LB films decreased with increasing of alkyl compounds amount.
        4,000원
        53.
        2009.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        We investigated the electrochemical properties for Langmuir-Blodgett (LB) films of functionalized polyimide. LB films of polyimide monolayer were deposited by the Langmuir-Blodgett method on the indium tin oxide(ITO) glass. The electrochemical properties measured by cyclic voltammetry with a three-electrode system(an Ag/AgCl reference electrode, a platinum wire counter electrode and LB film-coated ITO working electrode) at various concentrations(0.5, 1.0, and 1.5 N) of NaClO4 solution. The current of reduction and oxidation range was measured from 1650 mV to -1350 mV, continuously. The scan rates were 50, 100 and 150 mV/s, respectively. As a result, monolayer and multilayer LB films of polyimide are appeared on irreversible process caused by the oxidation current from the cyclic voltammogram.
        4,000원
        54.
        2009.12 구독 인증기관 무료, 개인회원 유료
        UV 경화형 수지를 바인더로 활용하고 다양한 크기, 형태, 재질의 입자를 첨가하여 분산시킨 분 산액을 TAC(triacetylcellulose) 필름에 코팅한 후 경화시켜 난반사필름을 제조 하는데 이때 투입된 입 자들이 필름의 물성에 미치는 영향을 분석하였다. 그 결과 입자의 형태가 구형 일 때 표면요철 형성에 유리하며 크기가 작은 입자보다는 큰 입자를 사용할 때 표면요철 형성이 용이하다는 것을 확인할 수 있었다. 입자의 재질이 표면요철에 미치는 영향은 입자의 크기나 형태에 의한 영향보다는 상대적으로 작았다. 입자와 바인더 수지는 각각 굴절율이 다르며 이에 따라서 바인더수지와 입자의 굴절율 차가 달라지게 된다. 따라서 입자의 재질에 따라 PS(polystyrene), silica, PMMA(poly(methyl methacrylate)) 순서로 total haze 변화율에 영향을 미치는 것을 확인할 수 있었다.
        4,200원
        55.
        2009.10 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The electrochromic properties of Au nanoparticles (NPs) incorporating poly (3, 4-ethylenedioxythiphene) (PEDOT) film were investigated. Trisodium citrate was used for stabilizing Au NPs to control the size. The capping molecules of the Au nanoparticles were exchanged from citrate to 2-mercaptoethanol (2-ME). Water was removed by centrifuge and Au NPs were redispersed in methanol (MeOH). Finally, we obtained ca. 11.7 nm diameter of Au NPs. The effects of 0.15 at% of Au NPs incorporation on the optical, electrical, and eletrochromic properties of PEDOT films were investigated. The electrical property and switching speed of Au/PEDOT film was slightly improved over that of PEDOT film because Au NPs play a hopping site role and affect packing density of the PEDOT chain. Through the ultra violet-visible spectra of PEDOT and Au/PEDOT films at -0.7 V (vs Ag/AgCl), blue shift of maximum absorption peak was observed from PEDOT (585.4 nm) to Au/PEDOT (572.2 nm) due to a shortening of conjugated length of PEDOT. The Au NPs interfered with the degree of conjugation and the maximum absorption peak was shifted to shorter wavelength.
        4,000원
        56.
        2009.09 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Transparent ITO films were deposited on a polycarbonate substrate with RF magnetron sputtering in a pure argon(Ar) and oxygen (O2) gas atmosphere, and then post deposition electro annealed for 20 minutes in a 4×10-1Pa vacuum. Electronbombardment with an accelerating voltage of 100V increased the substrate temperature to 120oC. XRD analysis of the depositedITO films did not show any diffraction peaks, while electro annealed films indicated the growth of crystallites on the (211), (222),and (400) planes. The sheet resistance of ITO films decreased from 103 to 82Ω/□. The optical transmittance of ITO films inthe visible wavelength region increased from 85 to 87%. Observation of the work function demonstrated that the electro-annealingincreased the work function of ITO films from 4.4 to 4.6eV. The electro annealed films demonstrated a larger figure of meritof 3.0×10-3Ω-1 than that of as deposited films. Therefore, the electro annealed films had better optoelectrical performances thanas deposited ITO films.
        4,000원
        57.
        2009.06 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The electrolyte effects of the electroplating solution in Cu films grown by ElectroPlating Deposition(EPD) were investigated. The electroplated Cu films were deposited on the Cu(20 nm)/Ti (20 nm)/p-type Si(100) substrate. Potentiostatic electrodeposition was carried out using three terminal methods: 1) an Ag/AgCl reference electrode, 2) a platinum plate as a counter electrode, and 3) a seed layer as a working electrode. In this study, we changed the concentration of a plating electrolyte that was composed of CuSO4, H2SO4 and HCl. The resistivity was measured with a four-point probe and the material properties were investigated by using XRD(X-ray Diffraction), an AFM(Atomic Force Microscope), a FE-SEM(Field Emission Scanning Electron Microscope) and an XPS(X-ray Photoelectron Spectroscopy). From the results, we concluded that the increase of the concentration of electrolytes led to the increase of the film density and the decrease of the electrical resistivity of the electroplated Cu film.
        4,000원
        58.
        2009.02 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The development of low-k materials is essential for modern semiconductor processes to reduce the cross-talk, signal delay and capacitance between multiple layers. The effect of the CH4 concentration on the formation of SiOC(-H) films and their dielectric characteristics were investigated. SiOC(-H) thin films were deposited on Si(100)/SiO2/Ti/Pt substrates by plasma-enhanced chemical vapor deposition (PECVD) with SiH4, CO2 and CH4 gas mixtures. After the deposition, the SiOC(-H) thin films were annealed in an Ar atmosphere using rapid thermal annealing (RTA) for 30min. The electrical properties of the SiOC(-H) films were then measured using an impedance analyzer. The dielectric constant decreased as the CH4 concentration of low-k SiOC(-H) thin film increased. The decrease in the dielectric constant was explained in terms of the decrease of the ionic polarization due to the increase of the relative carbon content. The spectrum via Fourier transform infrared (FT-IR) spectroscopy showed a variety of bonding configurations, including Si-O-Si, H-Si-O, Si-(CH3)2, Si-CH3 and CHx in the absorbance mode over the range from 650 to 4000 cm-1. The results showed that dielectric properties with different CH4 concentrations are closely related to the (Si-CH3)/[(Si-CH3)+(Si-O)] ratio.
        4,000원
        59.
        2009.02 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        This study investigated the dependence of the various sputtering conditions (Ar pressure: 2~10 mTorr, Power: 50~150 W) and thickness (50~1200 nm) of Si thin film on the electrochemical properties, microstructural properties and the capacity fading of a Si thin film anode. A Si layer and a Ti buffer layer were deposited on Copper foil by RF-magnetron sputtering. At 10 mTorr, the 50 W sample showed the best capacity of 3323 mAh/g, while the 100 W sample showed the best capacity retention of 91.7%, also at 10 mTorr. The initial capacities and capacity retention in the samples apart from the 50W sample at 10 mTorr were enhanced as the Ar pressure and power increased. This was considered to be related to the change of the microstructure and the surface morphology by various sputtering conditions. In addition, thinner Si film anodes showed better cycling performance. This phenomenon is caused by the structural stress and peeling off of the Si layer by the high volume change of Si during the charge/discharge process.
        4,000원
        60.
        2008.04 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        A ZrO2 coating solution containing ZrO2 photo-catalysis, which is transparent in visible light, was prepared by the hydrolysis of alkoxide, and thin films on the SiO2 glass substrate were formed in a dipcoating method. These thin films were heat-treated at temperatures ranging from 250˚C-800˚C and their characteristics were subjected to thermal analysis, XRD, spectrometry, SEM, EDS, contact angle measurement, and AFM. Tetragonal ZrO2 phase was found in the thin film heat treated at 450˚C, and anatase TiO2 phase was detected in the thin film heat-treated at 600˚C and above. The thickness of the films was approximately 300 nm, and the roughness was 0.66 nm. Thus, the film properties are excellent. The films are super hydrophilic with a contact angle of 4.0˚; moreover, they have self-cleaning effect due to the photo catalytic property of anatase TiO2.
        4,000원
        1 2 3 4 5