The investigation on the lightweight of automobiles has been underway in commercial vehicles as well as passenger cars due to global warming and strengthening of European emission standards. In this study, the V-arm were developed for lightweight parts using aluminum alloy instead of steel with high pressure die casting processing. This study has focused on lightweight adaptive concept design. Several models of V-arm were designed and analyzed for the fluidity and solidification. V-arm was produced with ADC12 by high pressure die-casting process. The mechanical properties of developed V-arm were measured; such as tensile strength, elongation, shear strength, and durability. The possibility of mass production with the light weight aluminum V-arm substitute from the steel. The weight was reduced about 38% from 16kg to 9.98kg. The productivity was improved with decreasing the process from 8 to 5 by All-in-0ne process using high pressure die-casting.
Recently, interest in the development of alternative water resources has been increasing rapidly due to environmental pollution and depletion of water resources. In particular, seawater desalination has been attracting the most attention as alternative water resources. As seawater desalination consumes a large amount of energy due to high operating pressure, many researches have been conducted to improve energy efficiency such as energy recovery device (ERD). Consequently, this study aims to compare the energy efficiency of RO process according to ERD of isobaric type which is applied in scientific control pilot plant process of each 100 m3/day scale based on actual RO product water. As a result, it was confirmed that efficiency, mixing rate, and permeate conductivity were different depending on the size of the apparatus even though the same principle of the ERD was applied. It is believed that this is caused by the difference in cross-sectional area of the contacted portion for pressure transfer inside the ERD. Therefore, further study is needed to confirm the optimum conditions what is applicable to the actual process considering the correlation with other factors as well as the factors obtained from the previous experiments.
This paper has been carried out the forming analysis, die stress analysis, and relevant tests for the straightness improvement of hollow shafts with blocktooth. Hollow forward extrusion is a process that a material in a die is pressed with a punch and the material is formed into the same direction through the gap of a mandrel and a bottom die. For an asymmetric shaped product, due to the difference of reduction ratios of the cross sections in its extruding, a phenomenon that the product bends from the difference of the flow speed comes to occur. As applying the key to the mandrel has a uniform flow speed, bending problem was solved. These were processed using Deform-3D as a finite-element analysis program. Analysis was compared with the experiment. Keyway height of the mandrel has been confirmed that the straightness best when it comes 0.1mm. These study are expected to be available as fundamental data in die design necessary for the manufacture of asymmetric goods in the future.
In our country, the number of coffee shops has steadily increased, reaching approximately 15,000 in 2013 from 1,254 in 2006. Adding to increase of coffee shops, customers' preference of roasted beans and extraction to ready-made coffee or instant coffee has lead to rapid expansion of roasted coffee market. In this study, the semi-rotating fluidized bed roaster prototype to reduce LPG consumption of the existing 60kg class large rotating fluidized bed roaster has been designed and retrofitted. In addition to the roaster prototype, processing system consist of bean automatic feeding equipment, debris sorting device, cooling device, cyclone collector, main control system etc. was developed. Also, the authors carrying out many measurements and tests such as LPG consumption, bean transfer time, debris sorting rate, cooling time and temperature, chaff collection rate for the various cases. As a result, the authors found that the semi-rotating fluidized bed roaster prototype can not only reduce LPG consumption, green bean transfer time, cooling time and temperature but also improve debris sorting rate, chaff collection rate of during coffee roasting
Automatic continuous manufacturing system is necessary to raise the productivity and strengthen the competitiveness in the wire manufacturing. The automatic wire cutting technology is an important element to link various processes and it is crucial technology to obtain high accuracy and quality of the wire. This study was performed to develop an automatic stainless steel wire cutting equipment that is consist of the first and second cutting equipments besides related devices to cut stainless steel wire. This wire cutting equipment can cut wire with high accuracy, and it can prevent sintering and discoloration
This paper carried out design in order to reduce the process of asymmetric pinch yoke, one of the important parts which transfer power to wheels through gearing box in automobile steering system. The purpose of the study is to reduce prime costs and strengthen competitiveness by designing the total 8 processes including the up-setting and forging process of the No. 1 as the forging process the current method of production. The process with die stress analysis by using the finite element method have been carried out through new optimal die design. As this study result, it is expected that die life can be secured as excellent material flow and caused by forming load. A prototype has been produced by basis of the analysis result and the reduction of the process was successful. As the unit price is lower than that of the current process, the competitiveness can be expected.