본 연구는 정정렬제 춘향가 전승 과정에서 나타난 변화 양상을 사설의 선율과 리듬 구조 중심으로 고찰하였다. 정정렬과 그의 직계 제자 김여 란 그리고 최승희로 이어지는 소리 중 ‘어사와 장모’를 분석하고자 했다. 정정렬 소리는 신나라 레코드사에서 발매한 SP복각본, 김여란 소리는 지 구레코드사에서 나온 음반을 채보하였으며, 최승희 소리는 그가 펴낸 ‘정 정렬제 춘향가 악보집’을 기반으로 3인의 소리를 비교 분석하였다. 분석 결과 첫째, 사설의 리듬 구조는 3소박과 2소박 그리고 혼용 리듬형 등 여러 분박 구조를 보이고 있으며, 정정렬은 분박 구조에서 비슷한 비율 을 보이는 반면, 김여란과 최승희에서는 2소박 계열의 두드러짐이 나타 났다. 둘째, 선율 구조는 악조에 있어서 김여란과 최승희는 계면조와 평 조에서 같은 청을 유지하는 데 비해 정정렬은 평조 대목에서 3차례 중심 음 변화가 보였다. 이러한 연구 결과를 토대로 정정렬제 판소리의 여러 다양한 대목들에 대한 폭넓은 분석도 논할 것을 제언하였다.
Springtails (class Collembola) play a crucial role in soil ecosystems. They are commonly used as standard species in soil toxicity assessments. According to the ISO 11267 guidelines established by the International Organization for Standardization (ISO), Allonychiurus kimi uses adult survival and juvenile production as toxicity assessment endpoint. Conventional toxicity assessment methods require manually counting adults and larvae under a microscope after experiments, which is time-consuming and laborintensive. To overcome these limitations, this study developed a model using YOLOv8 to detect and count both adults and juveniles of A. kimi. An AI model was trained using a training dataset and evaluated using a validation dataset. Both training and validation datasets used for AI model were created by picturing plate images that included adults and larvae. Statistical comparison of validation dataset showed no significant difference between manual and automatic counts. Additionally, the model achieved high accuracies (Precision=1.0, Recall=0.95 for adults; Precision=0.95, Recall=0.83 for juveniles). This indicates that the model can successfully detect objects. Additionally, the system can automatically measure body areas of individuals, enabling more detailed assessments related to growth and development. Therefore, this study establishes that AI-based counting methods in toxicity assessments with offer high levels of accuracy and efficiency can effectively replace traditional manual counting methods. This method significantly enhances the efficiency of large-scale toxicity evaluations while reducing researcher workload.
At Pyropia farms, organic acid treatments have enhanced productivity and quality by removing pest algae (such as Ulva spp. and diatoms) and reducing the occurrence of diseases. Ulva spp. attaches to the Pyropia nets competing for inorganic nutrients & space and diminishing productivity. Additionally, the presence of attached contaminants (such as diatoms and middy particles) on the Pyropia nets negatively affects the quality of Pyropia. This study investigated the effects of removing Ulva linza and washing the Pyropia yezoensis nets using an activating treatment agent (organic acid and highly saline solution) with an air bubble device. The results of measuring the dead cell ratios after treatment under different conditions showed that the dead cell ratio of U. linza did not significantly increase when the air bubble device combined the activating treatment agent with the activating treatment agent alone. When washing the P. yezoensis nets, the air bubble device was about 19-37% more effective than the activating treatment agent alone. The findings of this study suggest that the air bubble device enhances the efficacy of the activating treatment agent, resulting in the effective cleaning of the Pyropia nets.
This study aims to analyze the cost of climate change damages to laver and sea mustard aquaculture, which are considered to be highly vulnerable to climate change in Korea. For this purpose, the correlation between aquaculture production and climate factors such as water temperature, salinity, air temperature, and precipitation was estimated using a panel regression model. The SSP scenario was applied to predict the changes in production and damage costs due to changes in future climate factors. As a result of the analysis, laver production is predicted to decrease by 18.0-27.2% in 2050 and 20.6-61.6% in 2100, and damage costs are predicted to increase from 29.7-50.8 billion KRW in 2050 to 35.7-116.1 billion KRW in 2100. Sea mustard production is projected to decrease by 24.5-37.2% in 2050 and 24.0-34.5% in 2100, with similar damage costs of 41.1-61.8 billion KRW and 41.1-58.6 billion KRW, respectively. These damage costs are expected to occur in the short term as damage caused by fishery disasters such as high temperatures, and in the long term as a decrease in production due to changes in aquaculture sites. Therefore, measures such as strengthening the forecasting system to prevent high-temperature damage, developing high-temperature-resistant varieties, and relocating fishing grounds in response to changes in aquaculture sites will be necessary.
Laver aquaculture, which occupies a large proportion in the aquaculture industry in Korea, is still highly dependent on human labor. Therefore, it is necessary to study the development of an automatic system to improve the working environment and increase the efficiency of aquaculture production systems. The purpose of this study is to evaluate the economic feasibility of an improved system in a study for the loading-unloading and automatic weighing systems in laver aquaculture industry. Economic analysis of the developed unloading and automatic weighing system were implemented under various conditions to calculate more accurate benefits and costs. As a result of this study, the economic feasibility was found to be very high in the three models: net present value (NPV), benefit-cost ratio (B/C), internal rate of return (IRR). Moreover, the results of sensitivity analysis showed that the economical efficiency of the automatic loading, unloading, and weighing system in laver aquaculture was very high.
For clothing items that combine the top with the bottom, such as a jumper suit, it is necessary to design original forms to develop clothes in various styles that can satisfy aesthetic and functional needs. Therefore, to determine the original forms of women’s jumper suits, this study aimed to analyze the patterns of women’s jumper suits being sold in the market comparatively and evaluate their fitness. For the study method, this researcher obtained five types of women’s jumper suits from local brands and compared the patterns’ measured sizes, then conducted exterior evaluation on the surplus according to five different movements and analyzed the values of distortion of clothing pressure comparatively. According to the results, in the basic posture, brands A and C received favorable results, while in the other movements, brand B, which had the biggest surplus on the bottom, was evaluated favorably. In conclusion, in the patterns of women’s jumper suits, a bigger surplus is added to either the crotch length or crotch girth rather than the top length, and the top and the bottom tend to have a different surplus according to the design. In addition, based on the values of body surface lengths according to the range of movements, this study suggests that an additional surplus be added to the length.
Global warming affects critical natural resources, one of which is the oceans that occupy 70% of the total cover of the earth. In other words, ocean warming is a subset of global warming which needs to be addressed urgently. Purple laver (pyropia spp.) is one of the most vulnerable items to climate change although it is a major export product of Korean fisheries. The purpose of this study is to analyze the causality of how climate change caused by global warming affects the increase or decrease of PLP (purple laver production). The target area for analysis was set to Maro-hae between Jindo-gun and Haenam-gun. We selected marine environmental factors and meteorologic factors that could affect PLP as variables, as well as co-integration tests to determine long-term balance, and the Granger causticity tests. As a result, PLP and marine environmental factors WT (water temperature), pH, and DO confirmed that long-term equilibrium relationships were established, respectively. However, there is only causality with WT and it is confirmed that there is only a correlation between pH and DO (dissolved oxygen). There was no long-term equilibrium relationship between PLP and HDD (heating degree days) and there is a causal effect that HDD affects PLP; however, it was less clear than that of WT. The relationship between PLP and RF (rainfall), WS (wind speed), SS (percentage of sunshine), and FF (farm facilities) was all balanced in the long term, and causality exists. Based on the results of the analysis, policy proposals were made.
The purpose of this study is to find out the determinants of export in Korean fishery products. For the analysis, laver and tuna, which account for almost half of seafood exports, were selected, and a gravity model widely used in trade analysis was applied. As explanatory variables, GDP, number of overseas Koreans, exchange rate, FTA, and WTO were applied, and fixed effect terms were included to take into account multilateral resistance that hinders trade. The analysis period is from 2000 to 2018, and the Poisson Pseudo Maximum Likelihood (PPML) method was applied to solve the problem of zero observation and heteroscedasticity inherent in trade data. As a result of the analysis, GDP was found to have a significant positive effect on both laver and tuna. The number of overseas Koreans was significant in canned tuna exports, but not in laver and the other tuna products. As the exchange rate increased, the export of laver and tuna for sashimi increased. The impacts of the FTA were confirmed in the exports of dried laver and raw tuna, which supports the results of the previous study. WTO was not significant for laver and tuna. Based on these results, it is necessary to find a way to make good use of the FTA to expand exports of seafood.
We analyzed the cutting mechanism of laver harvesting machine in the sea area near Gooam Port in Goheung, Jeollanam-do, and investigated the change and efficiency of laver collecting operation in the working ship. The laver working ship slides uniformly from the bow to the upper part of the laver collecting machine on the deck and cuts the wet laver attached to the bottom of the net at the blade of the havesting machine. The laver farming net, which was loaded with laver turrets on the deck by gravity and collected primitives, consisted of a ship structure that led to the stern side and into the sea. The working ship operation is in harvesting process while driving in a S-shape that is separated by one space to efficiently collect the laver net. During laver working ship operation, the speed was 0.51 m/s in the access stage, 0.56 m/s in the havesting stage, and 0.52 m/s in the exit stage. Considering the cutting edge life and production efficiency of the laver harvesting machine, it is appropriate to harvest 1.15 to 1.26 kg/rpm by operating at a rotational speed of about 700 to 800 rpm rather than forcibly harvesting the product at high speed. On the deck of the working ship, 959.7 kg of starboard and 1048.7 kg of center were 964.7 kg of port side. Based on the starboard, 9.3% of the central part and 0.5% of the port side appeared. The reason for this was due to the difference in harvest time according to the turning direction of the working ship.
As a first step in obtaining the minimum level of data needed to develop smart cultivation technology for Korean seaweed gim (Pyropia yezoensis), farming tests have been carried out using onshore aquaculture facilities. The aquaculture facility was built on paddy farmland on the west coast of Chungnam and received seawater from nearby sea. In this paper, we report the overall process and results of the aquaculture trials attempted in Korea's first onshore gim aquaculture facilities. In addition, the industrial possibility of gim production using the onshore aquaculture system will be discussed through the analysis of all expenses incurred in the test form.
본 연구의 목적은 질산, 황산, 암모니아수, 과산화수소에 대한 생태독성평가를 통해서 사고대비물질들에 대한 기초 독성 데이터베이스를 구축하여, 향후 화학사고 발생시 환경 피해에 관한 의사결정에 과학적 근거를 제공하는 데 있다. 이를 위해 본 연구에서는 사고대비물질 중 토양의 물리·화학적 성질을 변화시킬 수 있는 질산, 황산, 암모니아수, 과산화수소를 대상으로 국내 토착 절지동물인 김어리 톡토기 (Paronychiurus kimi)를 이용한 생태독성평가를 수행하였다. 7일간의 급성독성평가와 28일간의 만성독성평가를 수행하였으며, 시험물질 농도에 따른 토양의 pH 변화를 관찰하였다. 토양의 pH는 질산, 황산, 과산화수소, 암모니아수의 농도가 10,000 mg kg-1 soil dry wt.일 때, 각각 2.86, 2.72, 7.18, 9.69이었다. 질산, 황산, 과산화수소, 암모니아수에 대한 만성독성평가 결과, LC50 값은 각각 2,703, 5,414, 3,158, 859 mg kg-1 soil dry wt.이었으며, P. kimi의 산란 수에 대한 EC50 값은 각각 587, 2,148, 1,300, 216 mg kg-1 soil dry wt.이었다. 비록 본 연구에서는 사고대비물질들의 유입에 따른 토양 pH의 변화만이 조사되었지만, 본 연구의 결과는 P. kimi가 사고대비물질에 의해 변화된 토양의 pH뿐만 아니라 사고대비물질의 유입에 의해 감소된 유기물 함량과 생성된 반응 산물에 의해서도 사망률과 산란수에 영향을 받을 수 있음을 의미한다. 대부분의 사고대비물질들이 토양의 특성을 변화시킬 수 있다는 점을 감안할 때, 토양의 특성 변화와 이에 따른 생물 영향을 고려한 화학사고 후 평가 및 복원 방법이 필요하다.
The purpoose of this paper is to analyze the relative effciency of dreid laver processing companies in Korea and provide the development direction and improvement plan for the dried laver industry. Data on 76 dried laver processing companies were selected as the subjects for Dea.
As a result of Dea, the average efficiency rate is shown that the technical efficiency is 84.90%, the pure technical efficiency is 93.83%, and the scale efficiency is 86.65%. and based on BCC results 38 companies are relatively efficient. comparing pure technical efficiency and scale efficiency, it showed that inefficiencies caused by scale of the company was greater than inefficiencies caused by the scale of technical matter. It implies that expanding the size is essential for achieving high-efficiency of dried laver processing company. In the inefficiency factor analysis, the result reveals that unstable supply of raw materials, quality management, capital flexibility and distribution ability influence the efficiency of laver processing company.