Oxidative stress caused by reactive oxygen species (ROS) is a key mechanism of skin aging, and the use of antioxidants is an effective strategy to prevent the symptoms associated with ROS-induced skin aging. The components rich in polyphenolic compounds with antioxidative activity were identified by fractionating an aqueous ethanolic extract of Gryllus bimaculatus (AE-GBE) using solvent using hexane, chloroform, ethyl acetate, butanol, and water. Their ability to migrate H2O2-induced oxidative stress in human dermal fibroblasts (HDFs) was then evaluated. The butanol fraction of AE-GBE had the highest polyphenol content and antioxidant effect, followed by the ethyl acetate and water fractions, suggesting that the likely antioxidant components are polar components. Furthermore, the butanol, ethyl acetate, and water fractions effectively reduced intracellular ROS production and DNA damage in HDF cells caused by H2O2. Overall, these findings suggest that the butanol fraction of AE-GBE shows promise as a natural insect-derived antioxidant material, capable of suppressing oxidative stress by showing a stronger antioxidant effect under H2O2 stimulation than the other fractions.
Owing to its diverse range of bioactive compounds, Ganoderma lucidumhas garnered significant research attention for health promotion and disease prevention. Ganodermanondiol, which has a triterpenoid structure, is one of the major active compounds of G. lucidum. In the present study, the anti-inflammatory effects of ganodermanondiol were investigated to evaluate its usefulness as a functional ingredient. Ganodermanondiol (0.5–2 g/mL) significantly inhibited the production of nitric oxide (NO), the expression of the cytokines tumor necrosis factor (TNF)??and interleukin 6 (IL-6), and the expression of cyclooxygenase (COX)-2 and inducible nitric oxide synthase (iNOS) in lipopolysaccharide-induced RAW 264.7 (murine macrophage) cells. Ganodermanondiol (0.5–2 g/mL) also inhibited the phosphorylation of mitogen-activated protein kinase (MAPK) signal molecules, including p38 and c-Jun N-terminal protein kinase (JNK) in RAW 264.7 cells. Ganodermanondiol significantly inhibited the essential factors involved in the inflammatory responses of RAW 264.7 cells and would, therefore, serve as a potential prophylactic and therapeutic agent for immune-related diseases.
This study was conducted to evaluate in vitro antioxidant activity of goat meat hot water extracts and the changes in apoptosis-related protein expression levels in the cancer cells treated with these extracts. Goat meat hot water extracts were prepared using different cuts of goat meat, including foreleg, hindleg, loin, and rib. Among these extracts, the foreleg and hindleg extracts displayed higher (P<0.05) ABTS radical scavenging activity than the other two extracts. Protein expression levels of BAX, p53, and p21 were not different in the cells treated with the extracts from different cuts, regardless of the cell type. Only p53 expression in HT-29 cells was elevated (P<0.05) after loin extract treatment. These results suggest that antioxidant activity and apoptosis-related effects of goat meat hot water extract varied with cut of meat under in vitro conditions. Because all data was obtained from the in vitro experiment, the ability to generalize conclusions is limited. Additional in vivo studies are necessary.
Taxillus yadoriki (Siebold) Dancer is a parasitic plant that grows on camellia trees and is common on Jeju Island. The branches of T. yadoriki have long been used to treat various diseases, including hypertension, diabetes mellitus, viral infections, and arthritis. Although recent studies reported that T. yadoriki has anticancer effects in various human cancer cell lines, including lung cancer, the exact molecular mechanisms supporting its anticancer effects are not well understood. This study aims to assess the anticancer effect of the methanol extract of T. yadoriki branches (METY) on mucoepidermoid carcinoma (MEC) cell lines (MC3 cells and YD15 cells) and explore its mechanism of action. Inhibitory activity of MEC cell proliferation was assessed using the CCK-8 assay. The mechanism of the anticancer effect on METY-treated MC3 cells and YD15 cells was evaluated with Hoechst 33342 stain and Western blot. After treating MC3 cells and YD15 cells with METY for 48 hours, the cytotoxicity of MC3 and YD15 cells increased, and nuclear fragmentation increased in both METY-treated MEC cells. Caspase-3 and cleaved PARP activation demonstrated apoptosis of METY-treated MEC cells. Cell proliferation inhibition with METY was alleviated in METY-treated MEC cells pretreated with zVAD-FMK, supporting the cell proliferation inhibition effect by apoptosis. METY-induced apoptosis in MEC cells occurs through MAP kinase pathways such as p38 and pAkt. MEC cell. METY-induced apoptosis of MEC cells occurs via the p38 and pAkt MAPK pathways. Therefore, METY may be a promising anticancer candidate for the MEC therapeutic strategy.
트랜스 신남알데하이드(TCA)는 계피의 활성성분 중 하나로 알려져 있으며, 항바이러스, 항균, 항진균 뿐 아니라 일부 암세포주에서 항암 작용이 있다고 보고된 바 있다. 하지만, 위암세포주에서의 보고는 미비하며 그 작용기전에 대해서는 밝혀진 바가 없다. 본 연구에서는 위암 AGS 세포주에 대한 증식 억제작용 및 그 기전을 살펴보았다. TCA는 농도의존적으로 AGS 세포의 생존율을 억제하였다. AGS 세포 형태로 보아 TCA에 의한 세포사멸을 확인할 수 있었다. 그 기전을 확인하기 위하여, 세포사멸 관련 단백질의 발현양을 조사한 결과, TCA는 p53과 Bax의 단백질 발현을 증가시켰다. 또한, 분절된 caspase 9 및 PARP 의 발현이 증가되는 것으로부터 TCA가 AGS 세포주의 세포사멸을 유도하였음을 알 수 있었다. 본 연구결과로부터 TCA가 위암에 대한 항암 활성이 있음을 확인하였으며, 추후 지속적인 연구를 통해 항암제 후보물질로 기대된다.
Despite existing chemotherapy and surgical resection strategies, salivary gland adenocarcinoma(AdCa NOS) is one of the major causes of mortality among malignant salivary gland tumors. New therapeutic measure are needed to improve the outcome for patients with AdCa. Overexpression of urokinase-type plasminogen activator receptor/urokinase-type plasminogen activator(uPAR-uPA) has been implicated in progression and metastasis of oral cancer. RNA interference(RNAi) which has emerged as an effective method to target specific genes for silencing has provided new opportunities for cancer therapy. But there has been rarely reported using RNAi-uPAR/uPA transfection in salivary gland AdCa. The purpose of this study were to examine the specific inhibition of uPAR/uPA mRNA and protein expression by RNAi transfection of uPAR/uPA through RT-PCR and Immunoslot blot, and to study tumor cell proliferation activity, adhesion, invasion and migration of SGT cell line in vitro compared to the controls. In adhesion assay, cells transfected with RNAi-uPAR/uPA inhibited markedly adhesion to vitronectin compared to parental cells. Angiogenic assays revealed a significant decrease in the angiogenic potential of SGT cells downregulated by both uPAR and uPA. In migration assay, suppressing uPAR and uPA inhibited the capacity of the cells to migrate compared to parental cells. In invasion assay, cells transfected with RNAi-uPAR/uPA showed the maximum decrease in invasion when compared to all other treatment conditions. RNAi expressing plasmids efficiently downregulated mRNA and protein expression of uPAR and uPA. Cell cycle analysis showed that the simultaneous downregulation of uPAR and uPA caused the accumulation of cells in the sub-G0/G1 phase in SGT cells. Immunoslot blot analysis revealed that downregulation of uPAR and uPA caused the prominent activation of caspase 8. It suggested that the RNAi targeting of the uPAR/uPA system could have a therapeutic potentiality for malignant salivary gland tumors.
The purpose of this study was to investigate the inhibitory effect of enzyme activity and anti-proliferation of human cancer cell lines (HCT 116, NCI-H460 and MCF-7) of peanut skin depending on cultivars (Arachis hypogaea L. cv. K-Ol, cv. Sinpalkwang, cv. Daan, cv. Heuksaeng) and extraction solvent. Peanut skin was extracted with 80% ethanol, 80% methanol, 80% acetone, and distilled water, followed by analysis of the enzyme inhibitory activity and anticancer activity. Methanol extract of Daan cultivar most effectively inhibited α-gluosidase (65.08%, 0.025 mg/mL), tyrosinase (82.49%, 2 mg/mL) and ACE (73.61%, 10 mg/mL). The inhibitory effect of peanut skin extracts on colon cancer cell (HCT-116), lung cancer cell (NCI-H460) and breast cancer cell (MCF-7) growth were investigate using MTT assay. The highest anti-proliferation of cancer cell line of peanut skin extracts was observed in the methanol extract of Daan cultivar. The cell viability on HCT 116, NCI-H460 and MCF-7 cell lines of methanol extracts from peanut skin of Daan cultivar was 48.13%, 41.03%, and 36.02% at 200 μg/mL, respectively. These results suggest that peanut skin extracts may mediate physiological activity, and provide valuable information for the use of peanut byproduct as a functional food material.
This study investigated the anti-inflammatory effects of processed (Beopje) curly dock (Rumex crispus L.) in LPS (lipopolysaccharide)-stimulated murine RAW 264.7 cells. The experimental group was classified into five groups : LPS no treatment, CD (curly dock), CD-B (CD processed through Beopje), LPS, LPS+CD-B (LPS+CD processed through Beopje) and LPS+CD (LPS+CD). Treatment of the Raw 264.7 cell lines using LPS led to a significant increase in NO production, pro-inflammatory cytokines (TNF-α, IL-6 and IL-1β), and inflammation related genes (COX-2 and iNOS). Investigation of the inhibitory effects of CD and processed CD on NO production and expression of iNOS and COX-2 was done in LPS-induced RAW 264.7 cells. There was significant inhibition of NO production by LPS+CD and LPS+CD-B in a dose-dependent manner (p<0.05). Particularly, LPS+CD-B exhibited reduced mRNA expression of iNOS and COX-2 and NO production as compared to LPS+CD in Raw 264.7 cell lines (p<0.05). These results may explain some known biological activities of curly dock including the anti-inflammatory effects. CD-B in particular exhibited the highest anti-inflammatory effects of inhibiting production of NO, through the regulation of inflammatory related genes and pro-inflammatory cytokines. These results of Beopje processing might help decrease the anti-biological effects and increase several active substances of curly dock
L-carnitine은 라이신과 메티오닌으로 생합성되며 골격근 과 심근을 포함한 다양한 동물조직에서 발견된다. L-carnitine이 포함된 식품으로는 양고기, 소고기, 돼지고기 등이 있고 근육발달에 도움을 주며 뼈를 강화하거나 대사작용을 도와주는 기능을 하여 영양 보조제로 많이 섭취하는 것으로 알려져 있다. 최근 L-carnitine은 제 2형 당뇨병, 골다 공증, 대사성 신경증후군 등의 다양한 질병의 약물로도 연구 되고 있으며 암에서는 치료 보조제로 개발되어있다. 하지만 대장암에서의 L-carnitine에 대한 효과 및 기전에 대해서는 명확하지 않고 연구된 바가 없기 때문에 본 연구에서 저자들은 L-carnitine의 효능을 인간대장암세포주 HCT116에서 규명하고자 하였다. L-carnitine은 세포 내 활성산소종 (ROS)를 높은 수준으로 증가시켜 세포 증식을 억제하였다. 또한, 세포 증식과 죽음에 관련한 단백질 ERK1/2와 p38을 유의적으로 활성화 시킨다는 것을 입증 하였다. 이때, ERK1/2 억제제(PD98059)를 처치하여 ERK1/ 2의 활성화가 활성산소종 발생 및 세포사멸에 중요하다는 것을 밝혔다. 따라서, 본 연구 결과는 L-carnitine이 대장 암세포주의 증식을 억제 할 수 있고 이는 대장암의 치료에 있어 잠재적인 치료 물질이 될 수 있음을 시사하며 이 과정에 관여하는 신호전달기전을 조사하여 항암의 치료기 전에서 활성산소종이나 ERK1/2, p38 단백질의 활성화의 중요성을 제시하였다.
우르솔릭산은 항암, 항산화, 항염증 작용과 같은 다양한 효과를 지니고 있다. 본 연구에서는 우르솔릭산이 인간 흑색종 암세포인 A375SM과 A375P 세포에 항암효과가 있는지 확인하였다. 두 세포의 생존율은 MTT assay를 통하여 확인하였으며 증식률은 Wound healing assay로 확인하 였다. 두 세포의 apoptotic body와 apoptosis 비율의 확인을 위한 DAPI 염색과 유세포 분석을 진행하였다. 그리고 웨스턴 블로팅을 통하여 흑색종 세포의 우르솔릭산의 농도에 따른 apoptosis 단백질의 유도를 조사하였다. 우르솔 릭산의 처리 농도에 따라 흑색종 세포의 생존율 감소와 증식률 감소를 확인하였다. DAPI 염색을 통하여 우르솔 릭산의 농도가 증가함에 따라 흑색종 세포의 염색체 응축 이 농도 의존적으로 증가하였고, 유세포 분석을 통하여 우르솔릭산에 대하여 농도 의존적으로 흑색종 세포의 apoptosis 비율의 증가를 확인하였다. 그리고 웨스턴 블로팅을 통해 흑색종 세포 A375SM과 A375P의 우르솔릭산 12 μM 농도에서 cleaved-PARP와 Bax의 증가와 Bcl-2의 감소를 확 인하였다. 본 연구는 우르솔릭산의 농도를 0 에서 20 μM 수준의 저농도에서 진행하였으며, 물질 처리 후 24 시간 뒤 결과를 가지고 분석하였다. 본 연구의 결과로 보아 우르솔릭산은 흑색종 세포 A375SM과 A375P에서 apoptosis 관련 단백질들의 조절을 통해 항암효과를 일으키는 것으로 사료된다.
Autophagy is recently receiving the spotlight as the development strategy for promising anticancer drugs. In particular, the majority of anticancer drugs originating from natural products are known to induce autophagy. Saururus chinensis has been used for treating various inflammatory diseases. Recent research has revealed that the extract of Saururus chinensis possess cytotoxicity for various types of human cancer cells. However, the exact action mechanism of Saururus chinensis extract for oral squamous cell carcinoma (OSCC) has not been studied yet. Therefore, the authors of this research aim to study the effect of methanol extract of S. chinensis (MESC) on OSCC cells. To observe the cell proliferation inhibitory effect of MESC on HSC3 cells, the authors conducted the trypan blue exclusion assay. Also, the action mechanism of MESC was studied by conducting the cell cycle analysis, acidic vesicular organelle (AVO) staining and flow cytometry analysis, monodansylcadaverine (MDC) staining, propidium iodide staining, and Western blotting on MESC-treated HSC3 cells. When HSC3 cells were treated in MESC, the cell proliferation was suppressed in time-dependent and dose-dependent manners. Also, the number of sub-G1 arrested cells increased in a dose-dependent manner. MDC punctate and AVO puncta significantly increased respectively. Western blot analysis demonstrated the expression of autophagy-related proteins increased, but apoptotic proteins were not observed. Also, the pAkt protein was reduced, while the p-p38 protein and pERK protein increased. According to our results, MESC induced autophagy and accompanied changes in the cell cycle in HSC3 cells. Also, the alteration in Akt, ERK, and p38 pathways were confirmed. This result suggested the possibility of MESC as the new promising adjuvant for treating OSCC patients.
본 연구에서는 발아와 고압처리에 따른 검정콩 조사포닌 추출물의 in-vitro 항암 활성을 확인하기 위하여 검정콩을 발아시킨 후 고압처리하고, 조사포닌 추출물을 제조한 후 인체 유래 유방암(MCF-7), 대장암(HCT-116), 전립선암(PC-3) 및 위암(AGS) 세포주에 대한 증식억제효과를 검토하였다. 대조구의 조사포닌 추출물은 400 μg/mL 농도에서 4종의 암세포주에 대하여 67.02~91.70% 범위의 생존율을 보여 항암 효과가 낮았지만, 발아 4일차 콩을 150 MPa의 압력에서 고압처리한 검정콩의 조사포닌 추출물은 23.94~57.37% 범위의 생존율을 보여 발아와 고압처리에 의해 암세포 성정억제효과가 증가하였다. 특히, 위암세포(AGS)의 경우 다른 세포주에 비해 저농도에서도 세포증식효과를 보여 가장 높은 암세포 증식억제 효과를 나타내었다. 이상의 결과로부터 항암 활성을 나타내는 Soyasaponin, B group의 soyasaponin 및 soyasapogenol의 함량은 발아와 고압처리에 의해 증가하였고, 고압처리 발아콩으로부터 항암 활성을 나타내는 사포닌 추출물의 개발이 가능할 것으로 생각된다. 또한, 추후 항암 활성 물질의 분리동정과 메커니즘 규명에 대한 연구가 수행되어야 할 것으로 판단된다.
Natural products are vastly utilized as a source of chemotherapeutic agents for human cancers. Kochia scopraia is traditionally used for the cure of urological and dermatological diseases. Recently, methanol extract of Kochia scoparia (MEKS) has been shown to have anti-cancer activity to various human cancers. However, there is no report demonstrating the anti-cancer activity of MEKS in human mucoepidermoid carcinoma (MEC) cells. In this study, the authors studied the effects of MEKS on the cell proliferation and underlying mechanism in YD15 human MEC cells. MEKS decreased YD15 cell proliferation proven by trypan blue exclusion assay and induced apoptosis, evidenced by cell cycle analysis and western blotting. Autophagy induction by MEKS was verified by western blotting. In addition, MEKS regulated the expression of phosphorylated Akt, phosphorylated p38 and Nrf2 protein. This results can imply that MEKS might be a potential candidate for the treatment of human MEC cells.
This study was carried out to identify medicinal mushrooms with protective effects against oxidative stress in PC12 neuronal cell line, followed by evaluation of their antioxidant property. Extracts of medicinal mushrooms, including Ganoderma lucidum extract (GLE), antler-shaped Ganoderma lingzhi extract (AGLE), Hericium erinaceus extract (HEE), and Sanghuangporus baumii extract (SBE), were screened for cytotoxicity using MTT assay. None of the extracts up to 10 μg/ml concentration affected cell viability. These extracts were further checked for their protective effect against oxidative stress-induced reactive oxygen species (ROS) production. Exposure to 50 μM H₂O₂ induced ROS generation in PC12 cells, which was inhibited only by treatment with AGLE. In addition, inhibition of H₂O₂-induced ROS generation by AGLE was found to be in a dose-dependent manner (2.5, 5, and 10 μg/ml). Microscopic examination of DCF fluorescence for detection of ROS showed a similar pattern. Further, antioxidant activity of AGLE was determined by ABTS radical cation assay, and its IC50 was found to be 46.90±0.31 μg/ml. Taken together, these results suggest that AGLE may help to alleviate oxidative stress in PC12 neuronal cells.
It is well-known that cultivated wild Panax ginseng has anti-inflammatory effect. However, a comparative study on cultivation period vs biofunctionality is currently lacking. In this study, 70% ethanol extracts of 3-years (yrs)-, 5-yrs-, or 7-yrs-old cultivated wild ginseng were evaluated for their inhibitory effects on RAW264.7 murine macrophages. Specifically, the production of pro-inflammatory cytokines (interleukin-6 [IL-6] and tumor necrosis factor-alpha [TNF-α]), the expression of surface proteins (CD80, CD86, and MHC-II), and the phagocytic properties were investigated. RAW264.7 cells were induced by 500 ng/mL of lipopolysaccharide (LPS) and treated with 0.1, 1, and 10 ppm of samples. LPS-induced IL-6, TNF-α and surface proteins in all samples were downregulated in a dose-dependent manner. Both IL-6 and TNF-α were significantly reduced at 10 ppm of the 7-yrsold sample compared to 10 ppm of 3-yrs- and 5-yrs-old samples. CD80 and CD86 were also reduced at 10 ppm of all samples, and there was no difference among samples. The phagocytosis has no difference except in 10 ppm of 3 yr-old sample. The results suggest that cultivated wild ginseng extract has anti-inflammatory effect without decreasing phagocytosis.
Ganoderma lucidum has been traditionally used as a medicine for treatment of bronchitis, arthritis, and high blood pressure, and it has been reported to display many biological activities including anticancer and immune activities. Since mushroom mycelium is known to have excellent biological activities together with mushroom fruiting body, studies on biological activities of mushroom mycelium have been actively conducted. Thus, the present study compared the biological activities before and after the cultivation of Ganoderma lucidum mycelium on Atractylodes rhizoma. When the radical scavenging activity was assessed by the DPPH assay, ARGL (ethanol extract of Atractylodes rhizoma mycelium fermented with Ganoderma lucidum) showed radical scavenging activity of 5.58~82.56% at concentrations of 10~500 μg/assay, while AR (ethanol extract of Atractylodes rhizoma) showed radical scavenging activity of 5.27~72.08% at the same concentrations. When measured by using the ABTS assay, ARGL showed higher radical scavenging activity than AR, which was consistent with the result obtained by the DPPH assay. In the MTT assay, the cytotoxicity of ARGL against all cell lines was higher than that of AR. In particular, the cytotoxicities of AR and ARGL against Hep3B at a concentration of 400 μg/assay were 71.81% and 86.40%, respectively. In addition, the result obtained by the SRB assay was consistent with the result obtained by the MTT assay. According to the results mentioned above, there is a high probability that medicinal herb cultures using mycelium can be used as sources of functional foods since the cytotoxicities against cancer cells and antioxidant activities increased when the mycelium was fermented with Atractylodes rhizoma.
Although salivary gland adenocarcinoma NOS accounts for third prevalence rate of all salivary gland tumors, it is one of the most aggressive solid tumors. Current therapy does not significantly improve survival rates. Thus, investigating new therapeutic modalities against salivary gland adenocarcinoma NOS is necessary. It is well known that docetaxel(TXT) as an antimicrotubulin agent induces mitotic block in proliferating cells. TXT has significant antitumor effects, and it is currently being tested in patients with malignant tumors, but TXT has not yet been tested in malignant salivary gland tumors. The purpose of this study were to examine the effects of TXT and to evaluate the biological mechanisms of TXT on salivary gland adenocarcinoma NOS. Proliferation, cell cycle regulation, connexin43 expression, apoptosis, and Fas receptor(FasR) expression were measured in cultured SGT cell line. Proliferation was little changed after 10ng/ml TXT exposure, but cellular proliferation was inhibited according to increasing concentration of TXT and time. Especially it was prominently inhibited after 96 hrs at 20ng/ml. G2-M arrest stage showed about up to 5 fold increase after exposure of TXT by flow cytometry. Apoptosis index showed about up to 8 fold increase after exposure of TXT by flow cytometry. Fas expression showed about up to 3 fold increase after exposure of TXT by flow cytometry. Apoptosis showed about up to 3 fold increase at 20ng/ml after exposure of TXT and anti-Fas agonist by flow cytometry. In Immunoslot blotting, Cx 43 protein expression was increased after TXT treatment. It suggested that TXT might induce apoptosis in SGT cells and could be used as a potent and specific chemotherapeutic tool for the treatment of salivary gland adenocarcinoma NOS in future.
7년 이상 장기간 배양으로 인한 고가의 산양삼은 항염증에 효과가 있다고 잘 알려져 있다. 하지만, 재배기간에 따른 항염증능의 비교 연구는 부족한 실정이다. 본 연구는, 3년, 5년, 7년 근령의 산양삼 추출물을 이용하여 RAW264.7 대식세포의 염증반응 모델에서의 항염증능을 비교분석하였다. 이를 위하여, 염증성 싸이토카인 (IL-6, TNF-α)의 분비, 표면 단백질(CD80, CD86, MHC-Ⅱ)의 발현 및 대식능을 분석하였다. 각 근령의 산양삼 추출물을 0.1, 1, 10ppm 농도로 RAW26.47 세포주에 처리한 후, LPS로 염증반응을 유도하였을 때, IL-6와TNF-α의 분비량이 모든 근령군에서 농도의 존적으로 감소함을 보였다. 하지만, 일반적으로 근령이 클수록 싸이토카인 분비 억제 효과가 높은 것으로 확인 되었다. 대식세포의 활성화마커인 표면 단백질의 발현양도 모든 실험군에서 농도의존적으로 감소 하는 경향을 나타내었다. 구체적으로는, CD80과 CD86의 발현은 3년삼, 5년삼, 7년삼의 10ppm에서 무처리 대조군과 비교하여 유의적으로 감소하였고, 근령간의 차이는 보이지 않았다. MHC-Ⅱ의 발현은 일정한 경향은 나타나지 않았고 3, 7년삼의 10ppm처리군에서 감소하였다. 대식능은 3년삼의 10ppm을 제외하고는 유의적 차이를 보이지 않았다. 이러한 결과는 산양삼 근령에 증가에 따라 항염증능이 증가하지만, 대식능에는 영향을 미치지 않는 것으로 평가되며 동물실험을 통하여 확증할 예정이다.
Recently, the area of marine resources has become concerned with sources for the next generation of the bio-industry. Until present, development of the marine resources has remained limited, although a large number of these resources are considered to have potential for various significant biological activities. Most marine sponges, marine algae and coral could be used to create specific compounds for survival against a harsh environment. Therefore, it was necessary that these materials needed to be elucidated with biological activities, such as like anti-inflammatory, anti-viral or anti-cancer effects for their utilization in the bio-industry. In this study, we screened extracts of marine resources for their anti-cancer effect on human colorectal cancer cells. These resources were collected at Kosrae of Micronesia on April, 2013 and extracted with methanol. Cytotoxicity of marine resources was observed. Of a total of 20 specimens, three specimens dose-dependently demonstration inhibition of cell viability. Furthermore, cells treated with these specimens for 48h were induced p53, p21, Bax and caspase-3. The results suggest that they involved p53-mediated apoptosis. Two positive specimens (1304KO-327 and 1304KO-329) were verified as the identical materials, which are Hyrtios sp. Unfortunately 1304KO-207 was not yet classified and needed to identify in the further study. There results suggested that marine resources with positive potential in anticancer effect would be good candidates as useful bio-resources.