Somatic cell nuclear transfer (SCNT) in pigs has been used as a very important tool to produce transgenic for the pharmaceutical protein, xenotransplantation, and disease model and basic research of cloned animals. However, the production efficiency of SCNT embryos is very low in pigs and miniature pigs. The type of donor cell is an important factor influencing the production efficiency of these cloned pigs. Here, we investigated the developmental efficiency of SCNT embryos to blastocysts and full term development using fetal fibroblasts (FF) and mesenchymal stem cells (MSCs) to identify a suitable cell type as donor cell. We isolated each MSCs and FF from the femoral region and fetus. Cultured donor cell was injected into matured embryos for cloning. After that, we transferred cloned embryos into surrogate mothers. In term of in vitro development, the SCNT embryos that used MSCs had significantly higher in cleavage rates than those of FF (81.5% vs. 72%) (p<0.05), but the blastocyst formation rates and apoptotic cell ratio was similar (15.1%, 6.18% vs. 20.8%, 9.32%). After embryo transferred to surrogates, nine and nineteen clone piglets were obtained from the MSCs and FF group, respectively, without significant differences in pregnancy and birth rate (50%, 40% vs. 52.3%, 45.4%) (p>0.05). Moreover, there was no significant difference in the corpus hemorrhagicum numbers of ovary, according to pregnancy, abortion, and delivery of surrogate mothers between MSCs and FF groups. Therefore, the MSCs and FF are useful donor cells for production of clone piglets through SCNT, and can be used as important basic data for improving the efficiency of production of transgenic clone pigs in the future.
체세포 복제기술을 이용한 복제가축 생산 기술은 1997년 전 세계적으로 이슈가 되었던 복제 면양 “Dolly”의 탄생을 계기로 여러 나라에서 소, 돼지, 말, 고양이, 개 등 많은 포유류에서 산자 생산에 성 공하였으며 우리나라의 체세포 복제 기술은 기술 선진국 대열에 들어서고 있다. 그러나 복제기술은 아 직까지 높은 유산율과 폐사율 등 해결해야 할 많은 근본적인 문제점 등이 있어 연구해야 할 분야는 적 지 않다고 하겠다. 체세포 복제 동물 생산기술은 당초에는 능력이 우량가축의 생산과 확대 및 조기증식 을 목적으로 이용되고 왔으나, 체세포 내로 우리가 원하는 유전자를 도입시키거나 없애는 기술 (knock-in과 knock-out)의 발달로 바이오장기 생산용 형질전환 복제 돼지의 생산을 목적으로 널리 이 용되고 있다. 또한, 최근에는 멸종위기에 있는 희소동물 유전자원을 멸실 이전에 동결 보존된 체세포를 이용하여 복원에 활용할 뿐 아니라 마약탐지견 생산 등 특수한 목적으로 활용되는 동물을 생산하는 기 술로서 기여하게 된다면 산업적으로 활용할 수 있는 분야가 더욱 확대될 것으로 기대된다. 따라서 체세 포 복제기술은 식용보다는 오히려 다양한 목적으로 복제동물을 생산하게 되면 산업적으로 활용할 수 있 는 가능성이 높을 것으로 기대되고 있다.
The objective of this study was to monitor health conditions of genetically identical somatic cells cloned Korean white cattle, endangered indigenous cattle (EIC) and indigenous cattle (IC) by analysis of hematologic characteristics. Naturally ovulated oocytes and donor cells were used for somatic cell nuclear transfer (SCNT). Donor cells and enucleated oocytes were followed by electric fusion, chemical activation and surgical embryo transfer into the oviducts of surrogate females. Two recipients became pregnant; two maintained pregnancy to term, and one live cattle were delivered by caesarean section. The cloned Korean white cattle were genetically identical to the nuclear donor cattle. As a result, the mean values of RBC and platelet of cloned cattle and white cattle were significantly decreased by age (P<0.05). The mean values of RBC, HCT, MCV and MCHC between cloned cattle and IC of the same age (1∼2 years) showed the statistical significance (P<0.05). Also, in the WBC of Korean white cattle, the estimated values were decreased according to the age from 12.0×103/μl under 1 year to 11.0×103/μl over 1 years respectively. Although clone-cattle had lower numbers of RBC than reference range, the most of RBC and WBC related heamatologic results of cloned cattle were not different when compared to reference range. This study suggests that cloned Korean white cattle derived from SCNT did not have remarkable health problems, at least in the growth pattern and hematological parameters. In addition, this study provides a valuable resource for further investigations of the preservation of rare genetic stocks underlying traits of interest in cattle.
The objective of this study was to monitor health conditions of four genetically identical somatic cells cloned Labrador retriever puppies by estimation of body weight and analysis of hematologic and serologic characteristics. Naturally ovulated oocytes and donor cells were used for somatic cell nuclear transfer (SCNT). Donor cells and enucleated oocytes were followed by electric fusion, chemical activation and surgical embryo transfer into the oviducts of surrogate females. Two recipients became pregnant; two maintained pregnancy to term, and four live puppies were delivered by Caesarean section. The cloned Labrador retrievers were genetically identical to the nuclear donor dog. The body weight of clone-1, -2, -3, and -4 was increased from 0.66, 0.40, 0.39, and 0.37 kg at birth to 6.2, 6.6, 6.2, and 6.0 kg at 8 weeks of age, respectively. Although clone-4 had lower numbers of RBC than reference range, the most of RBC and WBC related heamatologic results of cloned puppies were not different when compared to reference range. In serological analysis, Glucose, ALP and inorganic phosphate level of four cloned puppies was significantly higher than the reference ranges. However, there was no significant difference among four cloned dogs. This study suggests that cloned puppies derived from SCNT did not have remarkable health problems, at least in the growth pattern and hematological and serological parameters.
This study was carried out to investigate effective condition for producing somatic cell nuclear transfer (SCNT) embryos of Jeju native cattle. As donor cells for SCNT, ear skin cells from Jeju native cattle were used. In experiment 1, the effect of recipient oocyte sources on the development of Jeju native cattle SCNT embryos were examined. Fusion rate of recipient oocyte and donor cell was not different between the Hanwoo and Holstein recipient oocytes (86.0% vs 89.9%). The rate of embryos developing to the blastocyst stage was significantly (p<0.05) higher in Hanwoo recipient oocytes than in Holstein recipient ones (28.2% vs 14.7%). Blastocysts derived from Hanwoo recipient oocytes contained higher numbers of total cells than those derived from Holstein ones ( vs ), although there were no significant difference. The mean proportion of apoptotic cells in blastocyst was not different between the sources of recipient oocytes. In experiment 2, the development of Jeju native cattle and Hanwoo SCNT embryos were compared. Hanwoo oocytes were used as the recipient oocytes. Fusion rate was not different between the Jeju native cattle and Hanwoo SCNT embryos (92.1% vs 92.9%). The blastocyst rate of SCNT embryos was significantly (p<0.05) lower in Jeju native cattle than in Hanwoo (16.9% vs 31.0%). Blastocysts derived from Jeju native cattle SCNT embryos contained smaller numbers of total cells than those derived from Hanwoo ones ( vs ), but there were no significant difference. The mean proportion of apoptotic cells in blastocyst was not different between the Jeju native cattle and Hanwoo SCNT embryos. The present study demonstrated that Hanwoo recipient oocytes were more effective in supporting production of Jeju native cattle SCNT embryos, although Jeju native cattle SCNT embryos showed reduced developmental capacity when compared to Hanwoo SCNT embryos.
복제동물 생산을 위한 체세포 핵이식 성공률은 공여세포 준비를 포함하여 많은 요소들에 의한 변수가 크다. 체세포 핵이식의 공여세포로 사용되는 세포는 G0/G1기로 세포주기를 맞 춘 confluence한 신선 배양세포를 일반적으로 이용하고 있다. 그러나 본 연구에서는 돼지 체세포 복제수정란 생산시 동결융해세포의 이용가능성을 확인하고자 일반세포와 형질전환 세포에서 신선한 배양세포와 동결융해세포를 이용한 복제수정란의 체외발달능력 및 배반 포 의 세포자연사를 비교하였다. 공여세포는 유전자가 삽입되지 않은 일반 미니돼지 귀세포와 상기세포에 GalT 유전자가 적중된 형질전환세포를 이용하였다. 배양세포는 confluence상태에서, 동결융해세포는 confluence 상태에서 동결된 세포를 융해하여 핵이식에 사용하였다. 수핵란과 공여세포가 융합 된 복제수정란은 PZM-3 배양액에서 38.5℃, 5% CO2, 5% O2 조건하에서 6일간 배양하여 배반포 발달율을 조사하였으며, 배반포의 세포자연사는 TUNEL법을 이용하여 분석하였다. 일반세포의 경우, 융합율(83.3 vs 79.1%), 배반포 발달율(18.0 vs 15.0%), 배반포 세포수 (38.4±12.8 vs 42.0±12.4) 그리고 배반포의 세포자연사 비율(2.1±2.7 vs 1.9±3.7%)은 배 양 세포와 동결융해세포 간에 차이가 없는 것으로 나타났다. 형질전환세포의 경우, 융합율 (87.0 vs 82.4%), 배반포 발달율(24.6 vs 17.3%) 그리고 배반포 세포수(35.3±11.9 vs 37.7± 15.4)는 두 세포군 간에 통계적 차이가 없는 것으로 나타났지만, 배반포의 세포자연사 비율 (6.0±4.8 vs 10.6±9.4%)은 배양세포가 동결융해세포보다 유의하게 낮은 것으로 나타났다 (p<0.05). 본 연구 결과는 배양된 신선 체세포를 대체하여 confluence 상태에서 동결보존된 돼지 체 세포는 융해 직후 공여세포로서 돼지 복제수정란 생산에 유용하게 활용될 수 있음을 제시 하고 있다.
DNA methyltransferase 1 (Dnmt1) gene contains three different isoform transcripts, Dnmt1s, Dnmt1o, and Dnmt1p, are produced by alternative usage of multiple first exons. Dnmt1o is specific to oocytes and preimplantation embryos, whereas Dnmt1s is expressed in somatic cells. Here we determined that porcine Dnmt1o gene had differentially methylated regions (DMRs) in 5’-flanking region, while those were not found in the Dnmt1s promoter region. The methylation patterns of the porcine Dnmt1o/Dnmt1s DMRs were investigated using bisulfite sequencing and pyrosequencing analysis through all preimplantation stages from one cell to blastocyst stage in in vivo or somatic cell nuclear transfer (SCNT). The Dnmt1o DMRs contained 8 CpG sites, which located in —640 bp to —30 bp upstream region from transcription start site of the Dnmt1o gene. The methylation status of 5 CpGs within the Dnmt1o DMRs were distinctively different at each stage from one-cell to blastocyst stage in the in vivo or SCNT, respectively. 55.62% methylation degree of the Dnmt1o DMRs in the in vivo was increased up to 84.38% in the SCNT embryo, moreover, de novo methylation and demethylation occurred during development of porcine embryos from the one-cell stage to the blastocyst stage. However, the DNA methylation states at CpG sites in the Dnmt1s promoter regions were hypomethylated, and dramatically not changed through one-cell to blastocyst stage in the in vivo or SCNT embryos. In the present study, we demonstrated that the DMRs in the promoter region of the porcine Dnmt1o was well conserved, contributing to establishment and maintenance of genome-wide patterns of DNA methylation in early embryonic development.
Previously, we reported that the osmolarity conditions in the satellite region were affected CpG DNA methylation status while Pre-1 sequence was not affected CpG DNA methylation in pNT blastocyst stage. This study was conducted to investigate the DNA methylation status of repeat sequences in pig nuclear transfer (pNT) embryos produced under different osmolarity culture conditions. Control group of pNT embryos was cultured in PZM-3 for six days. Other two treatment groups of pNT embryos were cultured in modified PZM-3 with 138 mM NaCl or 0.05 M sucrose (mPZM-3, 320 mOsmol) for two days, and then cultured in PZM-3 (270 mOsmol) for four days. The DNA methylation status of the Pre-1 sequences in blastocysts was characterized using a bisulfite-sequencing method. Intriguingly, in the present study, we found the unique DNA methylation at several non-CpG sequences at the Pre-1 sequences in all groups. The non-CpG methylation was hypermethylated in all three groups, including in vivo group (86.90% of PZM- 3; 83.87% of NaCl; 84.82% of sucrose; 90.94% of in vivo embryos). To determine whether certain non-CpG methylated sites were preferentially methylated, we also investigated the methylation degree of CpA, CpT and CpC. Excepting in vivo group, preference of methylation was CpT>CpC>CpA in all three groups investigated. These results indicate that DNA methylation of Pre-1 sequences was hypermethylated in CpG as well as non-CpG site, regardless modification of osmolarity in a culture media.
One-step dilution and direct transfer would be a practical technique for the field application of frozen embryo. This study was to examine whether Jeju Black Cattle (JBC, Korean Cattle) can be successfully cloned from vitrified and one-tep diluted somatic cell nuclear transfer (SCNT) blastocyst after direct transfer. For vitrification, JBC-SCNT blastocysts were serially exposed in glycerol (G) and ethylene glycol (EG) mixtures〔10% (v/v) G for 5 min., 10% G plus 20% EG (v/v) for 5 min., and 25% G plus 25% EG (v/v) for 30 sec.〕which is diluted in 10% FBS added D-PBS. And then SCNT blastocysts were loaded in 0.25 ml mini straw, placed in cold nitrogen vapor for 3 min. and then plunged into LN2. One-step dilution in straw was done in 25℃ water for 1 min, by placing vertically in the state of plugged- end up and down for 0.5 min, respectively. When in vitro developmental capacity of vitrified SCNT blastocyst was examined at 48 h after one-step dilution, hatched rate (56.4%) was slightly lower than that of control group (62.5%). In field trial, when the vitrified-thawed SCNT blastocysts were transferred into uterus of synchronized 5 recipients, a cloned female JBC was delivered by natural birth on day 299 and healthy at present. In addition, when the short tandem repeat marker analysis of the cloned JBC was evaluated, microsatellite loci of 11 numbers was perfectly matched genotype with donor cell (BK94-14). This study suggested that our developed vitrification and one-step dilution technique can be applied effectively on field trial for cloned animal production, which is even no longer in existence.
This study was performed to identify the differentially methylated region (DMR) and to examine the mRNA expression of the imprinted H19 gene in day 35 of SCNT pig fetuses. The fetus and placenta at day 35 of gestation fetuses after natural mating (Control) or of cloned pig by somatic cell nuclear transfer (SCNT) were isolated from a uterus. To investigate the mRNA expression and methylation patterns of H19 gene, tissues from fetal liver and placenta including endometrial and extraembryonic tissues were collected. The mRNA expression was evaluated by real-time PCR and methylation pattern was analyzed by bisulfite sequencing method. Bisulfite analyses demonstrated that the differentially methylated region (DMR) was located between -1694 bp to -1338 bp upstream from translation start site of the H19 gene. H19 DMR (-1694 bp to -1338 bp) exhibits a normal mono allelic methylation pattern, and heavily methylated in sperm, but not in oocyte. In contrast to these finding, the analysis of the endometrium and/or extraembryonic tissues from SCNT embryos revealed a complex methylation pattern. The DNA methylation status of DMR Region In porcine H19 gene upstream was hypo methylated in SCNT tissues but hypermethylated in control tissues. Furthermore, the mRNA expression of H19 gene in liver, endometrium, and extraembryonic tissues was significantly higher in SCNT than those of control (p<0.05). These results suggest that the aberrant mRNA expression and the abnormal methylation pattern of imprinted H19 gene might be closely related to the inadequate fetal development of a cloned fetus, contributing to the low efficiency of genomic reprogramming.
Osmolarity of culture media is one of the most important factors affecting in vitro development. This study was conducted to investigate the DNA methylation status of Pre-1 and satellite sequence in pig nuclear transfer (pNT) embryos produced under different osmolarity culture conditions. Control group of pNT embryos was cultured in PZM-3 for six days. Other two treatment groups of pNT embryos were cultured in modified PZM-3 with 138 mM NaCl or 0.05M sucrose (mPZM-3, 320 mOsmol) for two days, and then cultured in PZM-3 (270 mOsmol) for four days. Previous our studies have reported that pNT embryos cultured in both hypertonic media showed significantly higher blastocyst formation rate than that of control. The DNA methylation status of the satellite sequences in blastocyst was characterized using bisulfite-sequencing technology. The satellite region had a similar methylation pattern of in vivo blastocyst among two culture groups excepting the control group. Each level of methylation is that the satellite DNA moderately methylated (43.10% of PZM-3; 56.12% of NaCl; 55.06% of sucrose; 60.00% of in vivo embryos). As a result of the sequence of PRE-1, CpG methylation pattern was similar to three groups, including in vivo group. In case of the satellite DNA region, the osmolarity conditions were affected CpG DNA methylation status while PRE-1 sequence was not affected CpG DNA methylation in pNT blastocyst stage. These results indicate that the modification of osmolarity in a culture media may influence to spatially change of DNA methylation of repetitive sequence for pNT embryo development.
This study was to investigate the effect of flavonoid treatment on in vitro development of bovine somatic cell nuclear transfer (SCNT) embryos, and their pregnancy and delivery rate after embryo transfer into recipient. In experiment 1, to optimize the flavonoid concentration, parthenogenetic day 2 (≥ 2-cell) embryos were cultured in 0 (control), 1, 10 and 20 μM flavonoid for 6 days. In the results, in vitro development rate was the highest in 10 μM flavonoid group (57.1%) among treatment groups (control, 49.5%; 1 μM, 54.2%; 20 μM, 37.5%), and numbers of total and ICM cells were significantly (p<0.05) higher in 10 μM flavonoid group than other groups. We found that 10 μM flavonoid treatment can significantly (p<0.05) decrease the apoptotic index and derive high expression of anti-oxidant, anti-apoptotic, cell growth and development marker genes such as Mn-SOD, Survivin, Bax inhibitor, Glut-5, In-tau, compared to control group. In experiment 2, to produce the cloned Jeju Black Cattle, beef quality index grade 1 bull somatic cells were transferred into enucleated bovine MII oocytes and reconstructed embryos were cultured in 10 μM flavonoid added medium. When the in vitro produced day 7 or 8 SCNT blastocysts were transferred into a number of recipients, 10 μM flavonoid treatment group presented higher pregnancy rate (10.2%, 6/59) than control group (5.9%, 2/34). Total three cloned Jeju Black calves were born. Also, two cloned calves in 10 μM flavonoid group were born and both were all healthy at present, while the one cloned calf born in control group was dead one month after birth. In addition, when the result of short tandem repeat marker analysis of each cloned calf was investigated, microsatellite loci of 11 numbers matched genotype between donor cell and cloned calf tissue. These results demonstrated that the flavonoid addition in culture medium may have beneficial effects on in vitro and in vivo developmental capacity of SCNT embryos and pregnancy rate.
This study was conducted to investigate the variation of growth characteristics and reproductive physiology in cloned Hanwoo male calves during growing stage. The hematological parameters, body weight, and plasma hormonal levels, birth to 12 months, were analyzed in the cloned calves (n=3). Differences among treatment means were determined by a student t-test. A probability of P<0.05 was considered statistically significant. The hematological parameters, such as white blood cell, red blood cell, and platelet, were not different in both normal and cloned calves. The difference of body weight, however, was significantly higher in the cloned calves, months (p<0.05) and months (p<0.01), than that of the comparators, respectively. The plasma IGF-1 level was statistically significant in the cloned calves, months, compared to that of the normal calves (p<0.05). However, the plasma testosterone level was not different in both normal and clone calves according to growing stage. Taken together, the cloned Hanwoo male calves are growing faster and maintaining a normal reproductive physiology.
본 연구는 한우 체세포를 이용하여 생산된 복제란을 한우 대리모에 이식하여 임신이 확인된 개체에서 임신 기간 중 주요 호르몬의 발현 특성을 인공수정으로 임신된 대리모와 비교 분석하고자 실시하였다. 한우 섬유아세포를 이용하여 생산된 체세포 복제란을 자연발정으로 동기화된 한우 대리모에 이식하여 임신이 확인된 개체를 공시하였으며(n=8), 대조군으로는 인공수정으로 임신된 대리모을 사용하였다(n=5). 발정 관찰 후 60일경에 직장검사로 임신을 확인하였다. 주요 스테로이드 호르몬인 progesterone(P4)와 estradiol-l7 (E2) 농도는 방사선동위원소 면역분석시험(RIA) 방법을 이용하였으며, 혈중 cortisol 농도는 ELISA 방법으로 측정하였다. 인공수정한 대리모의 경우 E2 농도가 분만 시기에 급격하게 증가하였으나, P4 농도는 분만 시기에 급격하게 감소하는 경향을 나타내었다. 이에 반해 복제란 이식우의 혈장 P4 농도는 분만 50일 전부터 분만 10일전까지는 대조군과 유사하게 유지되었으나, 분만예정일에는 전혀 떨어지지 않고 높은 수준으로 유지되었다. 한편, 복제란 이식우에서 분만 때까지 정상적으로 임신이 유지된 대리모들의 경우는 임신 기간 동안 cortisol 농도는 임신 후반기까지 낮게 유지되며 별다른 변화를 나타내지 않았다. 반면에 유산이 일어난 개체의 경우에는 임신 100일경에 cortisol의 농도가 급격하게 증가하는 것을 확인하였다. 이상의 결과를 종합하여 보면, 복제란 이식우의 경우 분만예정일 전 후에 일어나는 급격한 호르몬의 변화가 일어나지 않음을 확인할 수 있었으며, 이러한 현상은 복제란 이식우의 분만 지연과 밀접한 관계가 있는 것으로 사료된다.
DNA methylation is one of the reasons for poor survival of clone animals. The OCT-4 gene is essential for maintaining pluripotency of embryonic stem (ES) cells and early embryos. We previously reported that the 5'-promoter region of Oct-4 gene was a target of DNA methylation and the methylation status was changed variously during embryonic development in bovine. The study conducted to examine the expression and methylation pattern of tissue-dependent differentially methylated region (T-DMR) of Oct-4 gene in bovine somatic cell nuclear transfer (SCNT) and in vitro fertilization (IVF) blastocysts. The Oct-4 gene expression was evaluated by RT-PCR and fluorescence immunocytochemistry. The methylation pattern of T-DMR was analyzed using restriction mapping and bisulfite sequencing methods. The Oct-4 transcripts were highly expressed in IVF, while they were not expressed in SCNT. The Oct-4 protein was not detected or expressed at very low level in SCNT, the intensity of Oct-4 protein, however, was strong in IVF. On the other hand, the T-DMR of Oct-4 gene was hypermethylated in SCNT compared to that of IVF. These results suggested that expression and the failure of demethylation of Oct-4 gene was closely associated with incomplete development of SCNT embryos.
본 연구는 체세포 복제란 이식우의 분만에 있어서 혈중 스테로이드호르몬, TGF-β1 농도와 분만지연의 상관 관계를 살펴보고자 실시하였다. 대조군으로는 인공수정(AI)을 통하여 임신한 암소(cow)들을 사용하였다(AI-R). 모든 AI-R들은 자연분만(n=5, 임신 284+-0.71일)을 하였다. 분만징후를 보이지 않는 체세포 복제란 이식우(n=5, SCNT-R)들은 분만 예정일보다 10일 정도 지난 임신 292일째에 제왕절개(Caesarean section, C-sec)를 실시하여 분만하였다. 혈액 및 태반 샘플을 분만 전.후에 채취하여 형태 및 중량 등을 측정하였다. 혈장호르몬인 Progesterone(P4)와 Estradiol-17β (E2) 농도는 방사선동위원소 면역 분석 시험(RIA) 방법을 이용하여 측정하였다. 혈장 및 태반분엽의 TGF-β1 농도는 ELISA 방법으로 측정하였다. SCNT-R에서 회수한 태반의 무게는 AI-R의 것과 비교하여 유의적으로 무거웠다(p<0.05). 분만 직전 SCNT-R들의 혈장 내 P4 농도는 AI-R들의 그것과 비교하여 유의하게 높았다(p<0.01). 하지만 SCNT-R들의 혈장 내 E2 농도는 AI-R과 비교하여 상대적으로 낮게 나타났다(p<0.01). 한편, 분만 전.후 SCNT-R들에서 혈장 또는 태반분엽의 TGF-β1 단백질 발현 수준은 AI-R들과 비교하여 각각 유의적으로 높은 수준을 유지하였다(p<0.01). 이상의 결과를 종합하여 보면, 분만 시 P4 및 E2의 이상 발현과 높은 수준의 혈장 및 태반 내 TGF-β1 단백질은 체세포 복제태아의 분만지연을 야기하는 중요한 요인들 중의 하나일 것이라 사료된다.
본 연구는 체세포를 이용하여 생산된 복제 한우 수소의 번식능력을 검토하기 위해 실시하였다. 복제 한우 수소(C-38 및 C-39) 또는 일반 한우 종모우로부터 정액을 채취하여 정자의 수 및 동결 전후의 생존성 등을 살펴보았으며, 정자의 운동성 등은 computer assisted sperm analysis(CASA)를 이용하여 측정하였다. 또한, 이들의 수정 능력을 확인하기 위하여 체외수정과 인공수정을 각각 실시하였다. 정액 성상에서는 복제 수소들과 일반 종모우 간에 정액의 양, 정자의 농도 및 동결융해 후의 생존성 등에서 차이가 나타나지 않았다. CASA를 이용한 분석에서 운동성, 곡선 운동 속도(VCL), 직선 운동 속도(VSL) 및 평균 진행 속도(VAP) 등은 복제 수소의 정액이 일반 종모우의 정액에 비하여 유의적으로 높았다(p<0.05). 체외수정에 따른 수정란의 분화율 및 배반포로의 발달율은 복제 수소와 일반 종모우 간에 차이가 나타나지 않았다. 복제소 정액(C-38)을 이용하여 인공수정을 한 5두의 체세포 복제 대리모에서 암수 각각 한 두씩의 건강한 복제 후대 송아지 2두를 생산하였다. 이상의 결과를 종합하여 보면, 실험에 공시된 복제 수소 개체 간의 차이가 나타나기는 하였지만, 복제 수소는 정액 성상과 정자의 운동성 등에서 일반 종모우와 차이가 없었으며. 또한 인공수정을 통해 송아지를 생산함으로써 정상적인 번식능력이 있음을 확인하였다.
본 연구는 재래 산양의 체세포 핵이식에 의하여 생산한 복제 산양(진순이)의 조직으로부터 공여 핵을 배양하여 다시 핵이식을 실시하여 재복제에 따른 융합율과 분할율, 이식 후의 수태율 등을 조사하여 재복제 가능성 여부를 검토하기 위하여 실시하였다. 공여 세포는 귀 유래 섬유아세포를 분리 배양하여 사용하였으며, 체내 성숙 난자는 성숙한 미경산 재래 산양에 과배란을 유기하여 외과적인 방법으로 난관 관류를 통해 회수하여 핵이식을 실시하였다. 핵이식란의 융합은 전