In this paper, the goal is to produce a target wheel that integrates the plate and CPS wheel among the components of the drive plate mounted on an automobile engine. We attempted to develop a manufacturing process technology for incremental forming of a target wheel with the desired thickness by rotating a disk-shaped thin plate material and deforming the plate using a forming device and tools. Incremental forming system was set up by establishing a forming process and designing and manufacturing the device and parts required for processing. It consists of a total of 4 stages of molding process, and the optimal roll design that can properly collect materials to prevent cracks or reverse steps at each stage is primarily important. After manufacturing the prototype, a material test was performed to confirm whether the mechanical properties of the deformed part were sufficient to make gear teeth.
This paper aims to study the modeling and controller of an electrically driven tractor optimized for energy efficiency under off-road conditions and when subjected to loads such as plowing. The dynamic model design is aimed at a 30kW electric tractor. The vehicle model consists of a 30kW motor, transmission, wheels, and a controller, designed using the commercial software Matlab/Simulink. In order to optimize energy efficiency under load conditions, this paper designs and implements a PID controller focusing on the vehicle's speed and wheel slip. The newly proposed electric tractor modeling and PID controller aim to demonstrate improved energy efficiency through simulation.
An in-wheel motor is a system in which a drive motor is mounted inside a wheel along with a braking device, and the motor inside the wheel directly drives the wheel. An SR motor drive in replace of the conventional PM motor drive for in-wheel motor system has been proposed and analyzed. Two different types of converters were selected and their feasibility in terms of different current control schemes was analyzed and validated through dynamic simulation using PSIM software.
Hexagonal bolt, nut, fittings, and high-pressure valves with special alloy play an important role in many industrial products, for instance, such as semiconductor facilities, hydrogen stations and fuel cell electric vehicles. The purpose of this study is to investigate the structural stability of turning wheel using the reaction force of roller in variable hexagonal rolling die. As the results, the bearing groove had the possibility of damage in turning wheel, especially, in case of Bottom condition. Furthermore, the turning wheel showed structural instability by using safety factor but structural stability using strength, respectively, as a safety criterion.
In the automobile manufacturing industry, lightweight design is one of the essential challenges to be solved fundamentally. The vehicle wheels are classified as safety related components as the main substructure of the vehicle. In this study, we illustrate a technique for selecting the appropriate number of spokes. Based on the basic model of the selected number of spokes, we propose a method to maintain stiffness and design lightweight using topology optimization software. Based on the basic model of the selected number of spokes, it was redesigned to be lightweight while maintaining stiffness by utilizing topology optimization software. By comparing and reviewing the structural analysis results of the basic model and the redesigned model, a design technique that can maintain structural safety and reduce wheel mass was proposed.
In this paper, durability verification of forged wheels for automobiles were performed using the finite element method for bending fatigue analysis and impact analysis. In addition, the durability analysis environment of forged wheels was implemented. By analyzing the stress distribution on the surface of the forged wheel, the area with a high possibility of breakage was identified and improved. The durability analysis of the initial model forged wheel was performed by bending fatigue analysis and impact analysis, The stress distribution of the forged wheel surface was analyzed through the analysis results of the initial model. and the spokes, flanges, hubs, and rear parts are less likely to be damaged were cut to reduce the weight by about 10%, and the reliability of the improved model was confirmed.
PURPOSES : The aim of this study is to evaluate the stripping resistance of a bead coating via the Hamburg wheel tracking test and image analysis.
METHODS : First, the stripping resistance of the bead coating was evaluated via the Hamburg wheel tracking test. A pneumatic wheel with a load of 175±2 N was used to simulate repeated skid cycles. Several bead coating mixtures with different numbers of coating layers, i.e., zero, one, two, three, and four layers, i.e., zero, one, two, three, and four layers,were conducted. Finally, an image analysis program was developed to analyze surface images captured from the Hamburg wheel tracking test.
RESULTS : The results show that the samples with more coating layers exhibit higher stripping resistance. After 500 stripping cycles, the percentage of bead loss is 4% to 28%. At 80% bead loss, the mixture with one coating layer presents more skid cycles than the control sample without a coating layer.
CONCLUSIONS : Incorporating a coating layer can improve the stripping resistance of glass beads under repeated skid cycles. Additionally, an image analysis program is established in this study to determine the percentage of bead loss caused by the stripping test.
Although airborne wear particles (AWPs) generated from wheel-rail contacts are the major source of particulate matter (PM) in subway systems, studies on reducing the generation of such particles in order to enhance air quality are extremely rare. Therefore, this study investigated the effect of applying water-lubricant (applying tap water) on improving air quality by reducing the mass concentration (MC) of AWPs from wheel-rail contacts at a train velocity of 73 km/h using a twin-disk rig. An optical particle sizer was used to measure the MC of particles with the diameter range of 0.3 μm~10 μm. The results showed that the generation trends regarding PM1, PM2.5, and PM10 were different for dry and water-lubricated conditions: all three PMs showed an increasing-decreasing trend with slip rate under dry conditions; however, they were almost constant with slip rate under water-lubricated conditions. The particle size distributions were also different for dry and water-lubricated conditions: the peak occurred in multi-modal with the largest peak at approximately 6 μm in diameter under dry conditions; whereas, the peak occurred in bi-modal with the largest peak at approximately 0.9 μm in diameter under water-lubricated conditions. In addition, MCs were mostly smaller under water-lubricated conditions than dry conditions except at approximately 0.9 μm in diameter. Applying water significantly decreased PM1~2.5 and PM2.5~10 by more than 95%. This caused a decrease in PM2.5 and PM10 by 48.1% and 78.5%, respectively. On the other hand, applying water increased PM0.3~1 (i.e., PM1) by 52.8%, possibly owing to the effect of water vapor and mineral crystals from tap water. Overall, these findings indicate that water-lubrication can improve air quality in subway systems by reducing the MC of APWs generated from wheel-rail contacts. This study may provide a reference for future studies seeking to improve air quality in subway systems by reducing AWPs generated from wheel-rail contacts by applying lubricants.
The styling of automobile wheels and their effect on vehicle appearance has increased in importance in recent years. The wheel designer has been given the task of insuring that a wheel design meets its engineering objectives without affecting the styling theme. The wheel and tire system is considered as a vehicle component whose dynamic modal information of the tire/wheel system are employed in the modal synthesis model of the vehicle. The Modal characteristics of a Automobile wheel play an important role to judge a ride comfortability and quality for a Automobile. In this paper, the modal characteristics of a Al-alloy and steel wheel for Automobile are studied. Natural frequency, damping and mode shape are determined experimentally by frequency response function method. Results show that wheel material property, size and design are parameter for shift of natural frequency and damping.
In this paper, a method of reducing the weight of vehicle wheels through topology optimization by finite element method is proposed. Recently, various environmental pollution caused by the operation of vehicles is gradually increasing, and this has a great correlation with the fuel efficiency of the vehicle. Therefore, it is required to reduce the weight of the vehicle to increase fuel efficiency. Among them, the vehicle's wheels are a key part of vehicle acceleration and braking, and passenger safety. Because the shape of the wheels is different, various effects such as reduced fuel economy and reduced airpower occur as well as aesthetic factors. The stiffness of the wheels plays an important role in transmitting the vehicle's power to the tires and braking. In this study, to reduce weight while satisfying the stiffness value, we propose to use topology optimization to design an arbitrary shape according to the number of spokes on the wheel.
초록 close In this study, the structural analyses were carried out with the old and new wheel models installed at the automotive tires. The stress and deformation at the middle circumference of wheel were seen to be greatest at two models. Also, the stress and deformation were smallest at the edge of wheel. The maximum deformation of the old model B is about five times larger than that of the new model A. The maximum equivalent stress of the old model B can be seen to be twice as large as the new model A. Also, it can be seen that the new model A is more stable than the old model B in terms of strength. It can be seen that the deformation energy of the old model B is 19 times larger than that of the new model A. And it is thought that the new model A is much more durable than the old model B in terms of impact. By utilizing this study result, the stress and deformation are investigated without the strength test of wheel installed at the automotive tire, and the durability can be seen.
This study has related to lightweight automobiles due to global warming with the reduction of fossil fuel reserves are rapidly progressing around the automobile industry.
This study has revealed the relationship for the mechanical properties via the analyzed microstructure, precipitated phase variation of the wheel hub of a commercial vehicle manufactured using molten forging technology using A356 and A357 alloys, which are high-strength Al-Si-Mg base cast aluminum alloys. Differential scanning calorimetry has performed to analyze the precipitation amount of each alloy that influences the mechanical properties of aluminum alloy. The XRD analysis has measured for the microstructure's crystal phase on A356 and A357 alloys.
In this paper has evaluated to compare the properties of the A356 alloy and the A357 alloy for the mechanical properties. The A356 alloy has confirmed that a microstructure is finer than A357 alloy, and a quantity of precipitated material is more than A357 alloy. Therefore, this study confirmed that the A356 alloy has better mechanical properties than the A357 alloy.
In order to commercialize large diameter PP pipes, the cutting work was attempted with the cutting machine (∅18″and AL120 cutter, 2100 r.p.m) used for the conventional PE or PVC pipe(∅1200 mm, t 70), but the cutting work was failed because the material of “PP pipe” melted and sticked to the surface of the wheel-cutter. In order to find the optimal structure and number of blades for wheel-cutters, an experimental investigation the temperature measurement of specimen and wheel-cutter and the visualization of cutted specimen surface and chip shape were carried out during and after experiment. In addition, modelings for cutting and heat transfer mechanisms have been developed for theoretical analysis. The theoretical and experimental results were in good agreement. The results show that the appropriate structure and the rotational speed of wheel-cutter are W60 and 650 rpm for the large diameter PP pipe cutting machine.
The study conducted finite element analysis in advance to understand the natural frequency, con-ducted static structural analysis and analyzed stress behavior occurring on the boundary of wheel and rail when passing the straight line and curve line. According to the FEA, the wheel had natural frequency of 1st mode 238.4Hz to 10th mode 1,320Hz, and the rail had natural frequency of 457.4Hz to 619.7Hz. When looking at the correlated frequency range, the natural frequency of 4th~6th mode of wheel and 3rd~9th mode of rail track were correlated. As for the result of stress behavior translation occurring on the boundary of wheel and track, it was 53.4MPa when passing the curve line, which was 16MPa higher than when passing the straight line.
In this paper, the shape adjustment algorithm of the spoked wheel cable structures with retractable membrane system is studied. The initial tension of the membrane or cable is necessary to form the structure and its value is determined by the design shape. However, due to internal and external environmental influences, its shape may be different from the initial designed shape. In the case of the cable structures covered in this study, tension adjustment is necessary to maintain the designed shape because it influences the tension of the cable depending on the state of the retractable membrane. Therefore, we proposed an adjustment algorithm of an initial shape based on the force method. The effectiveness and validity of the methodology were examined through the applicable cable structures. The results of the shape adjustment analysis of the symmetric spoked wheel cable model were reliable and accurate results were obtained.
PURPOSES : The purpose of this study is to analyze not only the strength but also the durability and abrasion resistance of concrete pavements as increasing the cases of domestic concrete pavement damage which do not meet the service years.
METHODS: The bottom layer of a two-lift concrete pavement was paved with original Portland cement (OPC) with 20~23 cm thickness. On the other hand, the top-layer, which is directly exposed to the environment and vehicles, was paved with high-performance concrete (HPC) with 7~10 cm thickness. For the optimal mixed design of the top-layer material of a two-lift concrete pavement, silica fume and polymer powder were mixed. Furthermore, it analyzes abrasion resistance of concrete as follow‘ ASTM C 779’which is dressing wheel abrasion test method.
RESULTS : As a result, abrasion resistance is improved with increasing the silica fume ratio. When the polymer powder is mixed, abrasion resistance of concrete is much improved. However, the effect of mixing ratio is not significant. It is very effective that adding both silica fume and polymer powder occur 20~40% of abrasion comparing with OPC variables.
CONCLUSIONS : The concrete strength and durability increased with silica fume and polymer powder. In particular, it is significant increasing strength of polymer powder under the flexural strength. In the abrasion resistance side, it is also significant when the silica fume and polymer powder used together.
The purpose of this study is to determine the stiffness of rubber of dynamic damper. This damper system reduces the steering wheel vibration caused by idling oscillation of the engine. Therefore, in order to measure the stiffness of the silicone rubber in the dynamic damper system, the material test of the silicone rubber was carried out. Using the measured stiffness, the FEM model of the dynamic damper system was constructed and the correlation by the experimental data was shown at an error of less than 2%. In addition, the dynamic damper system was simplified to a two-degree-of-freedom spring-mass model and the effect of the stiffness change of the rubber on the natural frequency of the column shaft was analyzed theoretically. As a result, the amplitude of the column shaft was reduced as the stiffness of the silicone rubber was lowered.