검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 64

        21.
        2014.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, nano-scale copper powders were reduction treated in a hydrogen atmosphere at the relativelyhigh temperature of 350℃ in order to eliminate surface oxide layers, which are the main obstacles for fabricating anano/ultrafine grained bulk parts from the nano-scale powders. The changes in composition and microstructure beforeand after the hydrogen reduction treatment were evaluated by analyzing X-ray diffraction (XRD) line profile patternsusing the convolutional multiple whole profile (CMWP) procedure. In order to confirm the result from the XRD lineprofile analysis, transmitted electron microscope observations were performed on the specimen of the hydrogen reduc-tion treated powders fabricated using a focused ion beam process. A quasi-statically compacted specimen from the nano-scale powders was produced and Vickers micro-hardness was measured to verify the potential of the powders as thebasis for a bulk nano/ultrafine grained material. Although the bonding between particles and the growth in size of theparticles occurred, crystallites retained their nano-scale size evaluated using the XRD results. The hardness results dem-onstrate the usefulness of the powders for a nano/ultrafine grained material, once a good consolidation of powders isachieved.
        4,000원
        22.
        2013.07 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        A two-pass differential speed rolling(DSR) was applied to a deoxidized low-phosphorous copper alloy sheet in order to form a homogeneous microstructure. Copper alloy with a thickness of 3 mm was rolled to 75 % reduction by two-pass rolling at 150˚C without lubrication at a differential speed ratio of 2.0:1. In order to introduce uniform shear strain into the copper alloy sheet, the second rolling was performed after turning the sample by 180˚ on the transverse direction axis. Conventional rolling(CR), in which the rotating speeds of the upper roll and lower roll are identical to each other, was also performed by two-pass rolling under a total rolling reduction of 75 %, for comparison. The shear strain introduced by the conventional rolling showed positive values at positions of the upper roll side and negative values at positions of the lower roll side. However, samples processed by the DSR showed zero or positive values at all positions. 100//ND texture was primarily developed near the surface and center of thickness for the CR, while 110//ND texture was primarily developed for the DSR. The difference in misorientation distribution of grain boundary between the upper roll side surface and center regions was very small in the CR, while it was large in the DSR. The grain size was smallest in the upper roll side region for both the CR and the DSR. The hardness showed homogeneous distribution in the thickness direction in both CR and DSR. The average hardness was larger in CR than in DSR.
        4,000원
        24.
        2012.03 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        소듐냉각 고속로 (SFR) 핵연료 피복관 후보재료로 고려되고 있는 중형 규모의 HT9 단조품 소재에 대한 금속조직학적 영향을 고찰하였다. 시험 재료는 유도가열법을 이용하여 1.1톤 규모의 잉곳으로 성형한 후, 1170℃에서 고온 단조 및 공랭을 통하여 160mm 직경 및 7000mm 길이를 갖는 단조품으로 가공하여 반 경방향으로 미세조직의 변화를 관찰하였다. 시험 결과 시험 재료는 페라이트-마르텐사이트 조직을 보였 으며 합금 조성에 의하여 2~3%의 델타 페라이트 (delta ferrite)를 가짐과 동시에 반경방향의 냉각속도 차 이에 의하여 최대 15%의 변태 페라이트 (transformed ferrite)를 함유함이 관찰되었다. 냉각곡선의 모델 링과 시간-온도-변태 (TTT) 선도를 이용한 민감도 분석을 통하여 단조품의 직경을 120mm로 줄였을 경우 중심부의 변태 페라이트 형성을 억제할 수 있음을 제시하였다.
        4,000원
        25.
        2011.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study we experimented that how polyurethane effect to acrylic-polyurethane resin in Full-Grain leather coatings. First of all, we consummated waterborne acrylic emulsion and waterborne polyurethane resin, Than we prepared F.G leathers which were coated by acrylic resin and acrylic-polyurethane resins. According to measured data for solvent resistance, acrylic resin and acrylic-polyurethane resins had good property. Sample a(WAC) had most low strength(2.10kgf/mm2) and sample d(WAC 93 : WPU 7) had most high strength(3.41kgf/mm2). Also we knew that most good property of abrasion is d(47.4 mg). In elongation case, a(WAC) had most good result(645 %) in this experiment.
        4,000원
        26.
        2011.01 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Energy resistance welding (ERW) is a pipe-producing process that has high productivity and low manufacturing cost. However, the high heat input of ERW degrades the mechanical property of the pipe. This study investigates the effect of heat input and alloying elements on microstructure and mechanical properties of ERW pipes. As the heat input increased, the ferrite amount increased. The ferrite amount in the weld centerline was larger than t at in the weld boundary. Medium carbon steels (S45C and K55) having 0.3~0.4wt.% carbon yielded a significant difference of ferrite amount in the weld centerline and weld boundary. High alloyed steels (DP780 and K55) having 1.5~1.6wt.% Mn showed a ferrite rich zone in the weld centerline. These phenomena are probably due to decarburization and demanganisation in the weld centerline. As the ferrite fraction increased, the hardness decreased a little for the S45C steels. In addition, DP780 steels and K55 steels showed that the hardness drops when those steels have a ferrite rich zone. But we demonstrated the good tensile property of the DP780 steels and K55 steels in which Mn is included.
        4,000원
        27.
        2010.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        A hierarchical computational method has been developed and used with finite element method based on dislocation density multiple-slip crystalline formulation to predict how nanoindentation affects behavior in face-centered cubic crystalline aggregates. Using displacement profiles which were obtained from molecular dynamics(MD) nanoindentation simulation, scaling relations based on indentation depths, grain-sizes, and grain aggregate distributions were obtained. These relations then applied to coarsen grains in micros- tructurally based FE formulation which accounts for dislocation density evolution, crystalline structures. This computational regime was validated with a several experimental results related to single gold crystals. This hierarchical model provides a tool to link nanosacle level with a microstructurally based FEM formulation that can be to ascertain inelastic effects such as dislocation density evolution. With the above certainty temperature distribution during the nanoindentation simulation also was investigated along with the different indentation depth.
        4,000원
        28.
        2009.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The thermal stability and mechanical properties of Nephila clavata and Bassaniana decorata spider silks were measured and compared with those of aramid and polyester fibers. The thermal stability of the spider silk was lower than those of the commercial aramid and polyester fibers. However, the mechanical properties of the spider silk were far superior to that of the polyester fiber. The effect of the water content of the spider silk on its thermal stability and mechanical property was examined by conducting the silk to heat treatment at 100℃ under vacuum for various times. The results indicated that spider silk subjected to heat treatment for 1.5 hr had excellent thermal stability and mechanical property.
        4,000원
        29.
        2009.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, the feasible test for the mechanical property characterization of ceramics and multi-layer ceramic capacitor(MLCC) was performed with nanoindentation technique. In case of ceramics, hardness and elastic modulus are dependent on the densification of specimen showing the highest hardness and elastic modulus values of 12.3 GPa and 155 GPa, respectively at . In case of MLCC chip, hardness of dielectric layer was lower than that of margin region. The nanoindentation method could be useful tool for the measurement of mechanical property within dielectric layer of very thin thickness in high capacitance MLCC
        4,000원
        30.
        2008.06 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        High-energy mechanical milling (HEMM) and sintering into Al-Mg alloy melt were employed tofabricate an Al alloy matrix composite reinforced with submicron and micron sized Al2O3 particles. Al-basedmetal matrix composite (MMC) reinforced with submicron and micron sized Al2O3 particles was successfullyfabricated by sintering at 1000oC for 2h into Al-Mg alloy melt, which used high energy mechanical milled Al-SiO2-CuO-ZnO composite powders. Submicron/micron-sized Al2O3 particles and eutectic Si were formed by in situdisplacement reaction between Al, SiO2, CuO, and ZnO during sintering for 2h into Al-Mg alloy melt and werehomogeneously distributed in the Al-Si-(Zn, Cu) matrix. The refined grains and homogeneously distributedsubmicron/micron-sized Al2O3 particles had good interfacial adhesive, which gives good wear resistance withhigher hardness.
        4,000원
        31.
        2008.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, consolidation behavior and hardness of commercially available molybdenum powder were investigated. In order to analyze compaction response of the powders, the elastoplastic constitutive equation based on the yield function by Shima and Oyane was applied to predict the compact density under uniaxial pressure from 100MPa to 700MPa. The compacts were sintered at for 20-60 min. The sintered density and grain size of molybdenum were increased with increasing the compacting pressure and processing temperature and time. The constitutive equation, proposed by Kwon and Kim, was applied to simulate the creep densification rate and grain growth of molybdenum powder compacts. The calculated results were compared with experimental data for the powders. The effects of the porosity and grain size on the hardness of the specimens were explained based on the modified plasticity theory of porous material and Hall-Petch type equation.
        4,000원
        32.
        2008.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, the bottom-up powder metallurgy and the top-down severe plastic deformation (SPD) techniques for manufacturing bulk nanomaterials were combined in order to achieve both full density and grain refinement without grain growth of rapidly solidified Al-20 wt% Si alloy powders during consolidation processing. Continuous equal channel multi-angular processing (C-ECMAP) was proposed to improve low productivity of conventional ECAP, one of the most promising method in SPD. As a powder consolidation method, C-ECMAP was employed. A wide range of experimental studies were carried out for characterizing mechanical properties and microstructures of the ECMAP processed materials. It was found that effective properties of high strength and full density maintaining nanoscale microstructure are achieved. The proposed SPD processing of powder materials can be a good method to achieve fully density and nanostructured materials.
        4,000원
        33.
        2007.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The sintering behavior and mechanical property of Mo nanopowder was investigated as a function of various sintering condition. Mo oxide nanopowders were milled using a high energy ball-milling process. After the ball milling for 20h, the crystalline size of was about 20 nm. The nanopowders were reduced at the temperature of without holding time in atmosphere. The sinterability of Mo nanopowder and commercial Mo powder was investigated by dilatometric analysis. Mo nanopowder and commercial Mo powder were sintered at for 1 hand for 3 h, respectively. In both specimens the measured relative density was about 95%. But the measured hardness values were 2.34 GPa for nanopowder and 1.87 GPa for commercial powder. Probably due to finer grain size of the sintered body prepared from Mo nanopowder than that prepared using commercial Mo powder. The mean grain sizes were measured to be about 1.4 mm and 6.2 mm, respectively.
        4,000원
        34.
        2006.09 구독 인증기관·개인회원 무료
        Al-8Fe-2Mo-2V-1Zr alloys were prepared by the gas atomization/hot extrusion and the melt spinning/hot extrusion. For the gas atomized and extruded alloy, equiaxed grains with the average size of 400 nm and finely distributed dispersoids with their particle sizes ranging from 50nm to 200nm were observed. For the melt spun and hot extrusion processed alloy, refined microstructural feature consisting of equiaxed grains with the average size of 200nm and fine dispersoids with their particle sizes under 50nm appeared to exhibit a difference in microstructure. Strength of the latter alloy was higher than that for the former alloy up to elevated temperatures.
        35.
        2006.09 구독 인증기관·개인회원 무료
        Two atomized alloy powders were pre-compacted by cold and subsequently hot forged at temperatures ranging from 653K to 845K. The addition of Cu and Mg causes a decrease in the eutectic reaction temperature of Al-10Si-5Fe-1Zr alloy from 841K to 786K and results in a decrease of flow stress at the given forging temperature. TEM observation revealed that in addition to Al-Fe based intermetallics, Al2Cu and Al2CuMg intermetallics appeared. The volume fraction of intermetallic dispersoids increased by the addition of Cu and Mg. Compressive strength of the present alloys was closely related to the volume fraction of intermetallic dispersoids.
        37.
        2006.04 구독 인증기관·개인회원 무료
        The present investigation has been performed on full densification behavior and mechanical property of the powder injection molded Fe-8wt%Ni nanoalloy powder. The net shaping process of the nanopowder was conducted by powder injection molding (PIM) process. The key-process for fabricating fully densified net-shaped nanopowder by pressureless sintering is an optimal control of agglomerate size of nanopowder. Enhanced mechanical property of PIMed Fe-Ni nanopowder is explained by grain refinement and microstructural uniformity.
        39.
        2006.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The alumina dispersion-strengthened (DS) C15715 Cu alloy fabricated by a powder metallurgy route was annealed at temperatures ranging from in the air and in vacuum. The effect of the annealing on microstructural stability and room-temperature mechanical properties of the alloy was investigated. The microstructure of the cold rolled OS alloy remained stable until the annealing at in the air and in vacuum. No recrystallization of original grains occurred, but the dislocation density decreased and newly formed subgrains were observed. The alloy annealed at in the air experienced recrystallization and grain growth took place, however annealing in vacuum at did not cause the microstructural change. The mechanical property of the alloy was changed slightly with the annealing if the microstructure remained stable. However, the strength of the specimen that was recrystallized decreased drastically.
        4,000원
        1 2 3 4