Ti-Al-Si target and Cr-Si target are sputtered alternately to develop a multi-layered nitride coating on a steel mold to improve die-casting lifetime. Prior to the multi-layer deposition, a CrN layer is developed as a buffer layer on the mold to suppress the diffusion of reactive elements and enhance the cohesive strength of the multi-layer deposition. Approximately 50 nm CrSiN and TiAlSiN layers are deposited layer by layer, and form about three μm-thickness of multi-layered coating. From the observation of the uncoated and coated steel molds after the acceleration experiment of liquid metal injection casting, the uncoated mold is severely eroded by the adhesion of molten metallic glass. On the other hand, the multi-layer coating on the mold prevents element diffusion from the metallic glass and mold erosion during the experiment. The multi-layer structure of the coating transforms the nano-composite structured coating during the acceleration test. Since the nano-composite structure disrupts element diffusion to molten metallic glass, despite microstructure changes, the coating is not eroded by the 1,050 oC molten metallic glass.
The activation energy to create a phase transformation or for the reaction to move to the next stage in the milling process can be calculated from the slop of the DSC plot, obtained at the various heating rates for mechanically activated Al-Ni alloy systems by using Kissinger's equation. The mechanically activated material has been called “the driven material” as it creates new phases or intermetallic compounds of AlNi in Al-Ni alloy systems. The reaction time for phase transformation by milling can be calculated using the activation energy obtained from the above mentioned method and from the real required energy. The real required energy (activation energy) could be calculated by subtracting the loss energy from the total input energy (calculated input energy from electric motor). The loss energy and real required energy divided by the reaction time are considered the “metabolic energy” and “the effective input energy”, respectively. The milling time for phase transformation at other Al-Co alloy systems from the calculated data of Al-Ni systems can be predicted accordingly.
Binary Ti-Al alloys containing 50 to 60 atomic percent aluminum are rapidly solidified by hammer anvil method under an argon atmosphere. Constituent phases in each alloy are identified by X-ray diffractometry and microstructures of the alloys are investigated using a transmission electron microscope. In alloys with aluminum content between 50 and 54 percent, a second phase exists besides TiAl(γ); this second phase is identified as Ti3Al(α2). The α2 phase is observed in two types of morphology. One is as fine lamellar alternating with γ and the other is as a particle. It is concluded that the existence of a metastable phase with the morphologies stated above should arise from a higher quenching rate attained by the hammer anvil method as compared to the conventional roll or splat-quench method. Implications of the above observation are discussed with respect to the phase relations in the Ti-Al binary system; these implications are still controversial in many respects.
The structural phase transformations of 0.7Pb(Mg1/3Nb2/3)O3-0.3PbTiO3 (PMN-0.3PT) were studied using high resolution x-ray diffraction (HRXRD) as a function of temperature and electric field. A phase transformational sequence of cubic (C)→tetragonal (T)→rhombohedral (R) phase was observed in zero-field-cooled conditions; and a C→T→monoclinic (Mc)→ monoclinic (MA) phase was observed in the field-cooled conditions. The transformation of T to MA phase was realized through an intermediate Mc phase. The results also represent conclusive and direct evidence of a Mc to MA phase transformation in field-cooled conditions. Beginning from the zero-field-cooled condition, a R→MA→Mc→T phase transformational sequence was found with an increasing electric field at a fixed temperature. Upon removal of the field, the MA phase was stable at room temperature. With increasing the field, the transformation temperature from T to Mc and from Mc to MA phase decreased, and the phase stability ranges of both T and Mc phases increased. Upon removal of the field, the phase transformation from R to MA phase was irreversible, but from MA to Mc was reversible, which means that MA is the dominant phase under the electric field. In the M phase region, the results confirmed that lattice parameters and tilt angles were weakly temperature dependent over the range of investigated temperatures.
Abstract This manuscript reports on compared color evolution about phase transformation of α-FeOOH@SiO2 and β-FeOOH@SiO2 pigments. Prepared α-FeOOH and β-FeOOH were coated with silica for enhancing thermal properties and coloration of both samples. To study phase and color of α-FeOOH and β-FeOOH, we prepared nano sized iron oxide hydroxide pigments which were coated with SiO2 using tetraethylorthosilicate and cetyltrimethyl-ammonium bro- mide as a surface modifier. The silica-coated both samples were calcined at high temperatures (300, 700 and 1000°C) and characterized by scanning electron microscopy, CIE L*a*b* color parameter measurements, transmission electron microscopy and UV-vis spectroscopy. The yellow α-FeOOH and β-FeOOH was transformed to α-Fe2O3 with red, brown at 300, 700°C, respectively.
This manuscript reports on compared color evolution about phase transformation of α-FeOOH@SiO2 and β-FeOOH@SiO2 pigments. Prepared α-FeOOH and β-FeOOH were coated with silica for enhancing thermal properties and coloration of both samples. To study phase and color of α-FeOOH and β-FeOOH, we prepared nano sized iron oxide hydroxide pigments which were coated with SiO2 using tetraethylorthosilicate and cetyltrimethyl-ammonium bro- mide as a surface modifier. The silica-coated both samples were calcined at high temperatures (300, 700 and 1000°C) and characterized by scanning electron microscopy, CIE L*a*b* color parameter measurements, transmission electron microscopy and UV-vis spectroscopy. The yellow α-FeOOH and β-FeOOH was transformed to α-Fe2O3 with red, brown at 300, 700°C, respectively.
The dielectric properties and phase transformation of poled <001>-oriented Pb(Mg1/3Nb2/3)O3-x%PbTiO3(PMN-x%PT) single crystals with compositions of x=20, 30, and 35mole% are investigated for orientations both parallel andperpendicular to the [001] poling direction. An electric-field-induced monoclinic phase was observed for the initial poled PMN-30PT and PMN-35PT samples by means of high-resolution synchrotron x-ray diffraction. The monoclinic phase appears from−25oC to 100oC and from −25oC to 80oC for the PMN-30PT and PMN-35PT samples, respectively. The dielectric constant (ε)-temperature (T) characteristics above the Curie temperature were found to be described by the equation(1/ε−1/εm)1/n=(T−Tm)/C, where εm is the maximum dielectric constant and Tm is the temperature giving εm, and n and C are constants that changewith the composition. The value of n was found to be 1.82 and 1.38 for 20PT and 35PT, respectively. The results of meshscans and the temperature-dependence of the dielectric constant demonstrate that the initial monoclinic phase changes to a singledomain tetragonal phase and a to paraelectric cubic phase. In the ferroelectric tetragonal phase with a single domain state, thedielectric constant measured perpendicular to the poling direction was dramatically higher than that measured in the paralleldirection. A large dielectric constant implies easier polarization rotation away from the polar axis. This enhancement is believedto be related to dielectric softening close to the morphotropic phase boundary.
In this study, the effect of milling time on the microstructure and phase transformation behaviors of Ni-12 wt.%B powders was investigated using vibratory ball milling process. X-ray diffraction patterns showed that the phase transformation of mixed Ni-B elemental powder occurred after 50 hours of milling, with a formation of nickel boride phases. Through the study of microstructures in mechanical alloying process, it was considered that ball milling strongly accelerates solid-state diffusions of the Ni and B atoms during mechanical alloying process. The results of X-ray photoelectron spectroscopy showed that most of B atoms in the powder were linked to Ni with a formation of nickel boride phases after 200 hours of milling. It was finally concluded that mechanical alloying using ball milling process is feasible to synthesize fine and uniform nickel boride powders.
The structure and dielectric properties of poled<001>-oriented 0.7Pb(Mg1/3Nb2/3)O3-0.3PbTiO3 (PMN-0.3PT) crystals have been investigated for orientations both parallel and perpendicular to the [001] poling direction. An electric field induced monoclinic phase was observed for the initial poled sample. The phase remained stable after the field was removed. A quite different temperature dependence of dielectric constant has been observed between heating and cooling due to an irreversible phase transformation. The results of mesh scans and temperature dependence of the dielectric constant demonstrate that the initial monoclinic phase changes to a single domain tetragonal phase at 370K and to a paraelectric cubic phase at 405K upon heating. However, upon subsequent cooling from the unpoled state, the cubic phase changes to a poly domain tetragonal phase and to a rhombohedral phase. In the ferroelectric tetragonal phase with a single domain state, the dielectric constant measured perpendicular to the poling direction was dramatically higher than that of the parallel direction. A large dielectric constant implies easier polarization rotation away from the polar axis. This enhancement is believed to be related to dielectric softening close to the morphotropic phase boundary and at the phase transition temperature.
Electro-Discharge Sintering (EDS) employs a high-voltage/high-current-density pulse of electrical energy, discharged from a capacitor bank, to instantaneously consolidate powders. In the present study, a single pulse of 0.57-1.1 kJ/0.45 g-atomized spherical powders in size range of 10~30 and consisting of -(Ti, Zr) and icosahedral phases were applied to examine the structural evolution of icosahedral phase during EDS. Structural investigation reveals that high electrical input energy facilitates complete decomposition of icosahedral phase into C14 laves and -(Ti, Zr) phases. Moreover, critical input energy inducing decomposition of the icosahedral phase during EDS depends on the size of the powder. Porous Ti and W compacts have been fabricated by EDS using rectangular and spherical powders upon various input energy at a constant capacitance of in order to verify influence of powder shape on microstructure of porous compacts. Besides, generated heat () during EDS, which is measured by an oscilloscope, is closely correlated with powder size.
In this study, as high temperature performance capable thermoelectric materials was manufactured by powder metallurgy.The as-casted Fe-Si alloy was annealed for homogenization below for 3 h. Due to its high brittleness, the cast alloy transformed to fine powders by ball-milling, followed by subsequent compaction (hydraulic pressure; 2 GPa) and sintering (, 12 h). In order to precipitate , heat treatment was performed at with varying dwell time (7, 15 and 55 h). As a result of this experiment thermoelectric phase was quickly transformed by powder metallurgical process. There was not much change in powder factor between 7h and 55h specimens.
The phase transformations and luminescent properties of Eu-doped Ca1-xSrxAl2O4 phosphors were investigated. Ca1-xSrxAl2O4:Eu2+ phosphors were synthesized by a solid-state reaction with a flux, H3BO3. A phase transformation from monoclinic CaAl2O4 to monoclinic SrAl2O4 was observed as the x values increased. A high-temperature hexagonal phase of SrAl2O4 was formed during this transformation as an intermediate phase under an H2 atmosphere due to oxygen vacancies; this did not occur in an air atmosphere. Accordingly, the emission spectra shifted from a blue region to a green region as x increased.
To co-fire with commercial LTCC (Low Temperature Co-fired Ceramic) materials at , different contents of were added to the (BZN) ceramics. According to the test results, the cubic phase of BZN was transformed into orthorhombic in all the test materials. phase was formed in test materials with of addition. The phase transformation of cubic BZN was controlled during the synthesis process with excess ZnO content. The Cubic and orthorhombic phases of BZN could coexist and be sintered densely at .
Effect of phase transformation and grain-size variation of hot-pressed cobalt on its dry sliding wear was investigated. The sliding wear test was carried out against glass (83% SiO2) beads at 100N load using a pin-on-disk wear tester. Worn surfaces, cross sections, and wear debris were examined by an SEM. Phases of the specimen and wear debris were identified by an XRD. Thermal transformation of the cobalt from the hcp ε phase to the γ (fcc) phase during the wear was detected, which was deduced as the wear mechanism of the sintered cobalt.
Yttrium aluminum garnet (YAG) powders were synthesized via mechanochemical solid reaction using with three types of aluminum compounds. reacted mechanochemically with all A1 compounds and formed YAM (yttrium aluminum monoclinic), YAG and YAP (yttrium aluminum perovskite) phases depending on the starting materials. The ground samples containing showed the best reactivity, whereas the ground sample containing A100H, which had the largest surface area, exhibited pure YAG after calcination at . The sample containing Al had the least reactivity, producing YAP along with YAG at . The types and grinding characteristics of the starting materials and grinding time are believed to be important factors in the mechanochemical synthesis of YAG.
The anatase particle was facetted at the free surface and a neck formation between the anatase particles prior to the phase transformation occured. This resulted in the severe lattice distortion at the region of the interface near the neck and this can act as the nucleation sites for the phase transformation. The grain growth of rutile particles after the phase transformation grew very fast by the sweeping phenomena of grain boundary. Therfore, It leaded to the microstructure without the rutile phase located in anatase particle.
Through the volume change of Sn in a low-temperature phase transformation, the Sn nanopowder with high, purity, was fabricated by an economic and eco-friendly process. The fine cracks were spontaneously generated. in, Sn ingot, which was reduced to powders in the repetition of phase transformation. The Sn nanopowder with 50 run in size was obtained by the 24th repetitions of phase transformation by low-temperature and ultrasonic treatments. Also, the powder was fabricated by the oxidation of the produced Sn powder to the ingot and milled by the ultrasonic milling method. The nanopowder of 20 nm in size was fabricated after the milling for 180 h
Four different mechanical alloying(MA) processes were employed to fabricate very fine intermetallic compound particles dispersed Al composite materials(MMC) with Al-4at.%Zr composition. Phase transformations including phase stability during MA and heat treatment processes were investigated. Part of Zr atoms were dissolved into Al matrix and part of them reacted with hydrogen produced by decomposition of PCA(methanol) to form hydride during first MA process. These hydrides disappeared when alloy powders were heat treated at . Stable dispersoids with structure were formed by heat treating the mechanically alloyed powders at . On the other hand, metastable dispersoids with structure were formed during first MA of powers with Al-25at.%Zr composition. These metastable dispersoids transformed to stable with structure when heat treated above .