검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 41

        1.
        2023.05 구독 인증기관·개인회원 무료
        Normally, non-metallic wastes, such as sands, concrete and asbestos are regarded as electrically non-conductive materials. However, when the temperatures are increased up to the melting point, their electrical conductivities can be greatly improved, flowing arc current. Accordingly, these nonmetallic wastes can be efficiently treated by heating them up to the electrically conducting temperatures by using a non-transferred type plasma torch, and then, melting them completely with arc currents in transferred mode of plasma torch. For this purpose, we propose a convertible plasma torch consisting of three cylindrical electrodes (rear electrode, front electrode and exit nozzle). Compared with conventional plasma torch with two cylindrical electrodes (rear electrode and front electrode), the proposed plasma torch can provide more stable plasma jet in high powered and non-transferred mode due to the presence of exit nozzle, resulting in rapid heating of the non-conductive materials.
        2.
        2023.05 구독 인증기관·개인회원 무료
        KHNP-CRI has developed small-capacity and Mega-Watt Class PTM (Plasma Torch Melter) for the purpose of reducing the volume of radioactive waste and immobilizing or solidifying radioactive materials. About 1 MW PTM is a treatment technology that operates a plasma torch and puts drumshaped waste into a melter and radioactive waste in the form of slag is discharged into a waste container. The small-capacity PTM is a treatment technology that operates a plasma torch and puts small amounts of radioactive waste by directly putting it into the melter through a waste input machine. Mega-Watt Class PTM was able to inject radioactive waste in drums, so it was disposed of without backloging. On the other hand, The small-capacity PTM put radioactive waste without a package, and the waste input was blocked. If even small-capacity PTM put radioactive waste in the form of small packages such as drums, it is expected that various types of radioactive waste can be processed for a long time. Packaging also reduces the risk of radioactive contamination.
        3.
        2023.05 구독 인증기관·개인회원 무료
        In KHNP CRI, the PTMs (plasma torch melting system) was developed as a treatment technology of a wide variety of radioactive wastes generated by nuclear power plants. The facility is made of melting zone, thermal decomposition zone, melt discharge zone, waste feeding device, MMI, and offgas treatment system. In this study, demonstration test was conducted using NaOH solution as liquid waste to evaluation the applicability of the PTM system. For demonstration test of NaOH solution treatment, the plasma melting zone is sufficiently pre-heated by the plasma torch for 5 hours. The temperature inside the plasma melting zone is about 1,600°C. The NaOH solution as simulant was put into the thermal decomposition zone by the spray feeding device with the throughput of maximum 30 liter/hour. During the test, the power of plasma torch is about 100 kW on the transferred mode. The 160 liters of liquid waste was treated for 500 minutes. After the demonstration test, the final product in the form of salt was remained in the melting zone, and the disposal of the final product are still under consideration.
        5.
        2022.10 구독 인증기관·개인회원 무료
        Plasma Arc Melter (MSO) system has been developed for the treatment and the stabilization of various kinds of hazardous and radioactive waste into the readily disposable solidification products. Molten salt oxidation system has been developed for the for the treatment of halogen- and sulfurbearing hazardous and radioactive waste without emissions of PCDD/Fs and acid gases. However, PAM system has showed some difficulty in the off-gas treatment system due to the volatilization of radionuclides and toxic metals at extremely high-temperature plasma arc melter and the emissions of acid gases. MSO system has also showed the difficulty in the treatment of spent molten salt into the disposable waste form. Present study discussed the results of organics destruction performance tests for the PAM-MSO combination system, which is proposed and developed to compensate the drawbacks of each system. The worst-case condition tests for the organics destruction were conducted at lowest temperatures and the worst-case condition tests for the retention of metals and radionuclides were conducted at highested temperatures under the range of normal operating condition. For the worst-case organic destruction test, C6H5Cl was selected as a POHCs (Principal Organic Hazardous Constituents) because of its high incinerability ranking and the property of generation of chlorine gases and PCDD/Fs when incompletely destroyed. Simulated concrete waste spiked with 1 L of C6H5Cl was treated and the emissions of 17 kinds of PCDD/Fs and other hazardous gases such as CO, THCs, NOx, SO2 and HCl/Cl2 were measured. For the worst-case condition tests for the retention of metals and radionuclides, Pb and Cs were selected because of its high volatility characteristics. The emissions of PCDD/Fs was extremely lowered than the emission limit and those of other hazardous constituents were below their emission limit. The results of performance tests on the organics destruction suggested that tested PAM-MSO combination system could readily treat PCBs-bearing spent insulation liquid, spent ion-exchange resins used for the treatment of spent decontamination liquid in the decommission process and the concreted debris bearing hazardous organic coating materials. The decontamination factor of Cs and Co were 1.4×105, 1.4×105, respectively. The emisison of Pb was 0.562 ppm. These results suggested that tested PAM-MSO system treated low-level radioactive and pb-bearing mixed waste.
        6.
        2022.10 구독 인증기관·개인회원 무료
        Present study investigated the waste form integrity of melted products generated from PAM-MSO system, which is proposed and developed to compensate the drawbacks of each system. The disposal suitability of the melting solidification products generated from the plasma arc melting treatment of pulverized cement debris spiked by Pb, Cd and Cs, as indicators of typical hazardous metals and radionuclides existed in the low-level mixed waste in the KHNPPs. The final waste form obtained by the test was evaluated for suitability for disposal. The compressive strength was 261.10 MPa, showing much higher values when compared to other waste form products. The compressive strength of both the sample after irradiation with 107 Gy radiation and that after long-term submersion test (90 days) satisfied the disposal criteria. As a result of the leaching test conducted according to the ANS 16.1 test method, it was confirmed that the leaching index satisfies the disposal criteria.
        7.
        2022.10 구독 인증기관·개인회원 무료
        Most of the wastes generated when dismantling nuclear power plant were contaminated with lowlevel radioactive materials, therefore, applying a plasma melting system is a good option to dispose of the complex wastes safely. Melting system with plasma technology was developed to dispose single metal or composite objects. Its purpose is to secure final emissions satisfying final treatment conditions by controlling oxidization/ reduction reaction condition in detail during the melting process. A hollow plasma torch applied at plasma melting system could be operated with various plasmaforming gasses such as N2, Air, Ar, O2, and etc. The melting furnace was designed based on a double sealing structure to prevent risk factors; such as leaks, etc. in the reaction condition. The effect of the external air inflow on the melting conditions was minimized by carefully designing the object input device, torch mounting part, final object discharge part, etc.
        8.
        2022.10 구독 인증기관·개인회원 무료
        This facility was developed to investigate the characteristics of metal oxide and to secure operational technology through hydrogen supply to 100 kW capacity transferred arc plasma torch and melting furnace under anoxic conditions. Besides, the emission of pollutants generated during operation was minimized by burning the exhaust gases in the next combustion chamber and by applying a SNCR, a scrubber, etc. The main target object was determined as a metal oxides generated as radioactive wastes when dismantling the nuclear power plant. The metal alloy was produced by supplying hydrogen during the melting process of the metal oxide. The reaction equation is as follows: Fe + M(Metal)On + H2(Gas) → FeM + Slag + H2O In this paper, operating conditions according to the melting temperature and hydrogen supply with iron and metal oxides were investigated, and the chemical characteristics of the alloyed metal and Slag were analyzed. The result of this study can be used as fundamental data for the treatment and disposal of metal wastes.
        9.
        2022.10 구독 인증기관·개인회원 무료
        In the present work, a three-phase AC arc plasma torch system is proposed to separate inorganic radioactive materials from the organic liquid waste. For this purpose, first, assuming the resistance of arc plasma ranges between 0.1 and 0.2 ohm, we designed a three-phase AC arc plasma power supply with the power level of 20 kW. Then, a three phase arc plasma torch consisting of three carbon rods with the diameter of 20 mm was designed and mounted on a cylindrical combustion chamber with the inner diameter of 150 mm. Detail design and basic performance of the plasma system were presented and discussed for application to the treatment of radioactive slurry wastes.
        10.
        2022.10 구독 인증기관·개인회원 무료
        In this work, we report the basic performance of a 100 kW class mobile plasma melting system consisting of two 24-ft commercial containers, each in charge of the plasma utilities and melting process. In this system, a 100 kW class transferred type plasma torch has been installed together with a crucible having an inner volume of 2,884 cm3. Filling the inner volume of the crucible with the simulated metal waste, such as bolts and nuts, melting tests have been carried out for 5 min by varying plasma input power from 50 kW to 100 kW. By measuring the volume of metal waste before and after melting test, then, the volume reduction rates were estimated and discussed.
        11.
        2022.05 구독 인증기관·개인회원 무료
        In this work, we introduce a 100 kW class mobile plasma melting system designed for non-combustible radioactive wastes treatment. To ensure mobility, the designed system consists of two 24-ft commercial containers, each in charge of the plasma utilities and melting process. In the container for plasma utilities, a 100 kW class DC power supply is installed together with a chiller and gas supply system whereas the container for melting process has a transferred type arc melter as well as off-gas treatment system consisting of a heat exchanger, filtrations, scrubber and NOx removal system. As a heat source for a transferred type arc melter, we adopted a hollow electrode plasma torch with reverse polarity discharge structure. Detailed design for a 100 kW class mobile plasma melting system will be presented together with the main specifications of the components. In addition, the basic performance data of the melting system is also presented and discussed.
        12.
        2022.05 구독 인증기관·개인회원 무료
        In KHNP CRI, the 100 kW PTM (plasma torch melting) system was designed for the treatment and disposal technology of various radioactive wastes including the metal, concrete, liquid waste and insulator. The facility consists of melting chamber, thermal decomposition chamber, waste feeding system and off-gas treatment system. In this study, to evaluate the applicability of the PTM system, demonstration test was conducted using the radiation hazmat suit as combustible waste. The plasma melting chamber is pre-heated by 2nd combustion device and plasma torch for 5 hours. The temperature inside the plasma melting chamber is approximately 1,600°C. The combustible waste was put into the melting chamber by the pusher feeding device with the throughput of maximum 50 kg/hour. During the test, the power of plasma torch is 60–96 kW on the transferred mod. It was evaluated in terms of long-term integrity of PTM system on operation according to the waste throughput ratio.
        13.
        2022.05 구독 인증기관·개인회원 무료
        Plasma melting technology has been considered as promising technology for treatment of radioactive wastes. According to the IAEA TECDOC-1527 report (2006), the technology has an advantage that it can treat regardless of waste types which is both combustible and non-combustible wastes. In particular, it is expected that a large amount of concrete, a representative non-combustible wastes, will be generated during the operation and dismantling of nuclear power plants. In order to treat the concrete waste in plasma torch melting system, various factors could be considered like the slag of electric conductivity, viscosity and melting temperature. Above all, as a critical factor, the viscosity of the melt is very important to easily discharge the melt. The viscosity of slag (SiO2-CaO-Al2O3 system) can be lowered by adding a basic oxide such as CaO, Na2O, MgO and MnO. The basic oxides are donors of oxygen ions. These oxides are called notwork breakers, because they destroy the network of SiO2 by reacting with it. In this study, the slag composition of the concrete waste was developed to apply the plasma torch melting. Also, demonstration test was performed with the developed slag composition and 100 kW plasma torch melting system.
        14.
        2022.05 구독 인증기관·개인회원 무료
        Plasma torch melting technology can pyrolyze and melt waste with high-temperature heat (about 1,600°C) using electric arc phenomena such as lightning. Waste that may be treated in a plasma torch melting facility is injected in solid (combustible, non-combustible) and liquid form depending on facility capacity. The 200 L drum type, screw supply type, and nozzle type liquid injection device are applied to MW plasma facilities, and the push rod type and screw supply type are applied to smallcapacity plasma facilities. In consideration of the characteristics of radioactive waste generated from operating and dismantling nuclear power plants, a waste input device suitable for plasma torch facilities was developed and verified through tests. In the future, facility soundness will be confirmed through long-term performance tests, and stability will be secured through continuous improvement.
        20.
        2020.12 구독 인증기관 무료, 개인회원 유료
        순환여과양식시스템(RAS)은 사육수를 여과하여 재사용하며 고밀도로 사육하는 양식 방법으로 수질관리 및 소독이 매우 중요하다. 병원체로 인한 질병 발생을 예방하고 수질 개선에 도움을 주기 위하여 최근 코로나 방전 플라즈마 처리수(plasma water, PW)를 이용한 사육수 소독법이 제안되었다. 본 연구에서는 플라즈마 발생장치를 설치한 순환여과시스템(처리구, PW system) 과 설치하지 않은 순환여과시스템(대조구, No PW system)에서 40일 동안 틸라피아를 사육하 면서 수질 변화 및 어체의 성장을 조사하였다. 이를 위해 10일 마다 물을 채수하여 UV 투과율 과 일반 세균 수 변화를 측정하였고 틸라피아의 성장지표, 생존율 및 조직학적인 차이를 분 석하였다. UV 투과율 실험 결과 처리구와 대조구는 실험 시작 시에(0일) 각각 74.1%, 74.8%를 나타냈으며, 40일째에 처리구는 91.8%로 증가한 반면 대조구는 65.2%로 감소하여 수중 유기 물 감소 효과를 확인하였다. 일반 세균 수는 40일에 이르러 처리구(101.69 CFU/ml)에서 대조구 (103.25 CFU/ml) 보다 유의하게 감소하였다(p<0.05). 틸라피아 성장차이 조사 결과 처리구는 대조구에 비해 총 증중량이 유의하게 높았으며(p<0.05), 다른 성장지표도 처리구가 상대적으로 높았으나 통계적으로 유의한 차이는 아니었다(p>0.05). 또한 처리구는 100%의 생존율을 보였 으며, 조직학적으로 대조구와 차이가 나타나지 않았다. 따라서 플라즈마 처리수는 순환여과양 식시스템 내 어류의 성장과 건강에 해를 끼치지 않고 수질 개선에도 효과가 있을 것으로 기대 된다. 그러나 현장 적용 시에는 탈기수조의 설치 등 주의사항을 충분히 고려하여야 할 것이다.
        4,000원
        1 2 3